Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification
Abstract
:1. Introduction
2. Materials and Methods
- −
- Scenario I—wavelengths of RE;
- −
- Scenario II—wavelengths of RE, GLCM statistics;
- −
- Scenario III—wavelengths of RE, GLCM statistics, vegetation indices from RE;
- −
- Scenario IV—wavelengths of RE and S2, GLCM statistics;
- −
- Scenario V—wavelengths of RE and S2, GLCM statistics, vegetation indices from RE;
- −
- Scenario VI—wavelengths of RE and S2, GLCM statistics, vegetation indices from RE and S2.
2.1. Study Sites
2.2. Pre-Processing of Satellite Imageries
2.3. Texture Analysis
2.4. Vegetation Indices
2.5. Spectral Separability and Similarity Analysis
2.6. Refined Forest Type Map
2.7. Random Forest Model for Tree Species Classification
- I.
- Calculating the out-of-bag (OOB) error from the raw data set.
- II.
- Calculating the OOB error for the dataset in which the values of specific variables are randomly mixed.
- III.
- Determining individual variable importance by considering the mean and variance of the difference between OOB errors in steps 1 and 2.
3. Results
3.1. Gray-Level Co-Occurrence Matrix (GLCM)
3.2. Spectral Separability and Similarity
3.3. Random Forest based Tree Classification using Multi-temporally Integrated Satellite Imageries
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Crisco, W.A. Interpretation of Aerial Photographs; US Department of the Interior, Bureau of Land Management: Anchorage, AK, USA, 1983; Volume 287, p. 38.
- van Leeuwen, W.J.D.; Huete, A.R.; Laing, T.W. MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Appl. 2012, 9, 272. [Google Scholar]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Puliti, S.; Talbot, B.; Astrup, R. Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle (UAV) Imagery. Forests 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, G.L.; McDermid, G.J.; Castilla, G.; Linke, J.; Rahman, M.M. Mapping Coarse Woody Debris with Random Forest Classification of Centimetric Aerial Imagery. Forests 2019, 10, 471. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Kim, K.-M.; Jin, R. Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. ISPRS Int. J. Geo-Inf. 2019, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Landry, S. Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data. Urban For. Urban Green. 2020, 53, 126675. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Abkar, A.A.; Honarmand, M.; Harris, J.R. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. J. Afr. Earth Sci. 2017, 129, 445–457. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Chen, J.; Chen, X. A geometric misregistration resistant data fusion approach for adding red-edge (RE) and short-wave infrared (SWIR) bands to high spatial resolution imagery. Sci. Remote Sens. 2021, 4, 100033. [Google Scholar] [CrossRef]
- Maillard, P. Comparing Texture Analysis Methods through Classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Mountrakis, G. Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example. Remote Sens. Environ. 2010, 114, 1220–1229. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.; Pang, Y. Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery. J. Indian Soc. Remote Sens. 2014, 43, 101–107. [Google Scholar] [CrossRef]
- Kukunda, C.B.; Duque-Lazo, J.; González-Ferreiro, E.; Thaden, H.; Kleinn, C. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 12–23. [Google Scholar] [CrossRef]
- Kwon, S.K.; Kim, K.M.; Lim, J. A Study on Pre-evaluation of Tree Species Classification Possibility of CAS500-4 Using RapidEye Satellite Imageries. Korean J Remote Sens. 2021, 37, 291–304. [Google Scholar]
- Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 1990, 11, 2269–2279. [Google Scholar] [CrossRef]
- Cha, S.-Y.; Pi, U.-H.; Yi, J.-H.; Park, C.-H. Identification of two common types of forest cover, Pinus densiflora(Pd) and Querqus mongolica(Qm), using the 1st harmonics of a Discrete Fourier Transform. Korean J. Remote Sens. 2011, 27, 329–338. [Google Scholar] [CrossRef]
- Tucker, C.J.; Vanpraet, C.L.; Sharman, M.J.; Van Ittersum, G. Satellite remote sensing of total herbaceous biomass production in the senegalese sahel: 1980–1984. Remote Sens. Environ. 1985, 17, 233–249. [Google Scholar] [CrossRef]
- Loveland, T.; Merchant, J.; Brown, J.; Ohlen, D. Development of a land-cover characteristics database for the conterminous U.S. Photogramm. Eng Remote Sens. 1991, 57, 1453–1463. [Google Scholar]
- Korea Forest Service (KFS). The Statistical Yearbook of Forestry; KFS: Daejeon, Republic of Korea, 2020; ISBN 11-1400000-000001-10. [Google Scholar]
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719-1–111719-11. [Google Scholar] [CrossRef]
- Shojanoori, R.; Shafri, H.Z.M.; Mansor, S.; Ismail, M.H. Generic rule-sets for automated detection of urban tree species from very high-resolution satellite data. Geocarto Int. 2017, 33, 357–374. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Tonbul, H.; Colkesen, I. Evaluation of atmospheric correction methods for Sentinel-2 imagery in the spectral identification of poplar (Populus Deltoides Bartr.) species. In Proceedings of the International symposium on applied Geoinformatics (ISAG-2021), Riga, Latvia, 2–3 December 2021. [Google Scholar]
- Hall-Beyer, M. GLCM texture: A tutorial. National Council on Geographic Information and Analysis Remote Sens. Core Curric. 2000, 3, 75. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Wallner, A.; Elatawneh, A.; Schneider, T.; Knoke, T. Estimation of forest structural information using RapidEye satellite data. For. Int. J. For. Res. 2014, 88, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Ferro, C.J.S. Scale and Texture in Digital Image Classification; West Virginia University ProQuest Dissertations Publishing: Morgantown, WV, USA, 1998; p. 1394100. [Google Scholar]
- Lan, Z.; Liu, Y. Study on Multi-Scale Window Determination for GLCM Texture Description in High-Resolution Remote Sensing Image Geo-Analysis Supported by GIS and Domain Knowledge. ISPRS Int. J. Geo-Inf. 2018, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Crippen, R. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural vegetation; ScienceOpen, Inc.: Burlington, MA, USA, 1974; p. E75-10354. [Google Scholar]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Senseman, G.M.; Bagley, C.F.; Tweddale, S.A. Correlation of rangeland cover measures to satellite-imagery-derived vegetation indices. Geocarto Int. 1996, 11, 29–38. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.; Ohlen, D.; Howard, S.; McKinley, R.; Zhu, Z. The normalized burn ratio and relationships to burn severity: Ecology, remote sensing and implementation. In Proceedings of the Ninth Forest Service Remote Sensing Applications Conference, San Diego, CA, USA, 8–12 April 2002. [Google Scholar]
- Ill, J.E.P.; McLeod, K.W. Indications of relative drought stress in longleaf pine from Thematic Mapper data. Photogramm. Eng. Remote Sens. 1999, 65, 495–501. [Google Scholar]
- Davis, S.M.; Swain, P.H. Remote Sensing: The quantitative Approach (No. BOOK); McGraw-Hill International Book Company: New York, NY, USA, 1978. [Google Scholar]
- Jensen, J.R.; Lulla, K. Introductory Digital image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: Glenview, IL, USA, 2015. [Google Scholar]
- Deur, M.; Gašparović, M.; Balenović, I. Tree Species Classification in Mixed Deciduous Forests Using Very High Spatial Resolution Satellite Imagery and Machine Learning Methods. Remote Sens. 2020, 12, 3926. [Google Scholar] [CrossRef]
- National Institute of Forest Science (NIFoS). Forest resource survey of Gwangneung Test Area; NIFoS: Deajeon, Republic of Korea, 2016; ISBN 11-1400377-000940-01. [Google Scholar]
- George, R.; Padalia, H.; Kushwaha, S. Forest tree species discrimination in western Himalaya using EO-1 Hyperion. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 140–149. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests; Ensemble Machine Learning Springer: Boston, MA, USA, 2012; pp. 157–175. [Google Scholar]
Satellite | Spatial Resolution (m) | Time Resolution (Days) | Swath Width (km) | Spectral Bands | Center Wavelength (nm) | Band Width (nm) |
---|---|---|---|---|---|---|
CAS500-4 | 5 | 1~3 | 125 | Blue | 490 | 65 |
Green | 560 | 35 | ||||
Red | 665 | 30 | ||||
Red Edge | 705 | 15 | ||||
NIR | 842 | 115 | ||||
RapidEye | 5 | 5.5 | 77 | Blue | 475 | 70 |
Green | 555 | 70 | ||||
Red | 657.5 | 55 | ||||
Red Edge | 710 | 40 | ||||
NIR | 805 | 90 | ||||
* Acquisition date of RapidEye imageries: 8 March 2019, 26 May 2019, 4 July 2019, 24 September 2019, 5 December 2019. | ||||||
Sentinel-2 | 60 | 5 | 290 | Coastal aerosol | 443 | 20 |
10 | Blue | 490 | 65 | |||
Green | 560 | 35 | ||||
Red | 665 | 30 | ||||
20 | Red Edge | 705 | 15 | |||
Red Edge | 740 | 15 | ||||
Red Edge | 783 | 20 | ||||
10 | NIR | 842 | 115 | |||
20 | Red Edge | 865 | 20 | |||
60 | Water vapor | 945 | 20 | |||
SWIR-Cirrus | 1375 | 30 | ||||
20 | SWIR | 1610 | 90 | |||
SWIR | 2190 | 180 | ||||
* Acquisition date of Sentinel-2 imageries: 27 March 2019, 23 May 2019, 30 September 2019. |
Satellite | Wavelength | Indices | Formula | Reference |
---|---|---|---|---|
RapidEye | Visible and Near Infrared (VNIR) | Difference Vegetation Index (DVI) | Pettorelli et al., 2005 [33] | |
Green Normalized Difference Vegetation Index (GNDVI) | Buschmann and Nagel, 1993 [34] | |||
Infrared Percentage Vegetation Index (IPVI) | Crippen, 1990 [35] | |||
Normalized Difference Index (NDI34) | Delegido et al., 2011 [36] | |||
Normalized Difference Vegetation Index (NDVI) | Rouse et al., 1974 [37] | |||
Ratio Vegetation Index (RVI) | Major et al., 1990 [38] | |||
Transformed Normalized Difference Vegetation Index (TNDVI) | Senseman et al., 1996 [39] | |||
Sentinel-2 | Visible and Near Infrared (VNIR), Short-wave Infrared (SWIR) | Global Vegetation Moisture Index (GVMI) | Ceccato et al., 2002 [40] | |
Normalized Burn Ratio (NBR) | Key et al., 2002 [41] | |||
Simple Ratio MIR/NIR Ratio Drought Index (RDI) | Ill and McLeod, 1992 [42] |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
---|---|---|---|---|---|---|---|---|
S2 | 0.016 | |||||||
S3 | 0.023 | 0.009 | ||||||
S4 | 0.039 | 0.024 | 0.023 | |||||
S5 | 0.134 | 0.119 | 0.115 | 0.096 | ||||
S6 | 0.158 | 0.173 | 0.176 | 0.196 | 0.287 | |||
S7 | 0.116 | 0.130 | 0.133 | 0.154 | 0.245 | 0.046 | ||
S8 | 0.107 | 0.121 | 0.125 | 0.145 | 0.237 | 0.053 | 0.010 | |
S9 | 0.084 | 0.099 | 0.102 | 0.122 | 0.215 | 0.076 | 0.032 | 0.023 |
Scenario | User Accuracy | 95% CI | p-Value | Kappa Value |
---|---|---|---|---|
I | 0.640 | (0.631, 0.649) | <2.2 × e−16 | 0.595 |
II | 0.832 | (0.825, 0.839) | <2.2 × e−16 | 0.812 |
III | 0.796 | (0.788, 0.803) | <2.2 × e−16 | 0.770 |
IV | 0.845 | (0.838, 0.851) | <2.2 × e−16 | 0.825 |
V | 0.816 | (0.809, 0.823) | <2.2 × e−16 | 0.793 |
VI | 0.833 | (0.826, 0.840) | <2.2 × e−16 | 0.801 |
Scenario | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
---|---|---|---|---|---|---|---|---|---|
I | 0.745 | 0.741 | 0.830 | 0.776 | 0.846 | 0.852 | 0.748 | 0.737 | 0.901 |
II | 0.874 | 0.811 | 0.903 | 0.862 | 0.957 | 0.983 | 0.842 | 0.943 | 0.985 |
III | 0.849 | 0.798 | 0.873 | 0.851 | 0.936 | 0.969 | 0.823 | 0.898 | 0.975 |
IV | 0.881 | 0.808 | 0.915 | 0.877 | 0.960 | 0.984 | 0.858 | 0.949 | 0.989 |
V | 0.857 | 0.802 | 0.896 | 0.861 | 0.944 | 0.975 | 0.837 | 0.924 | 0.981 |
VI | 0.863 | 0.807 | 0.899 | 0.866 | 0.953 | 0.977 | 0.835 | 0.928 | 0.985 |
Average | 0.845 | 0.795 | 0.886 | 0.849 | 0.933 | 0.956 | 0.824 | 0.896 | 0.969 |
Rank | 7 | 9 | 5 | 6 | 3 | 2 | 8 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, S.; Lim, J.; Kim, K.; Yim, J.; Lee, W.-K. Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification. Forests 2023, 14, 746. https://doi.org/10.3390/f14040746
Cha S, Lim J, Kim K, Yim J, Lee W-K. Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification. Forests. 2023; 14(4):746. https://doi.org/10.3390/f14040746
Chicago/Turabian StyleCha, Sungeun, Joongbin Lim, Kyoungmin Kim, Jongsoo Yim, and Woo-Kyun Lee. 2023. "Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification" Forests 14, no. 4: 746. https://doi.org/10.3390/f14040746
APA StyleCha, S., Lim, J., Kim, K., Yim, J., & Lee, W. -K. (2023). Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification. Forests, 14(4), 746. https://doi.org/10.3390/f14040746