Forest Plant Water Utilization and the Eco-Hydrological Regulation in the Karst Desertification Control Drainage Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sampling Collection
2.3. Isotopic Analysis
2.4. MixSIAR Analysis
- (1)
- The shallow layer (0–30 cm): The SWC and isotope values from the first 30 cm were close to each other, with a small variation along the vertical profile. In addition, the soil that resided close to the surface could easily be affected by rainfall and evaporation, so the soil water isotope value and SWC tended to exhibit a large range of variation between the seasons.
- (2)
- The deep layer (30–60 cm): The SWC and isotope values in this layer changed less than those in shallow soil, because the soil layer was deeper and thus less affected by external precipitation and evaporation. As a result, the changes between the seasons were smaller.
2.5. Data Analyses
3. Results
3.1. Precipitation Distribution and Isotopic Composition
3.2. Isotopic Composition and Variation of Xylem Water
3.3. Soil Moisture and Isotopic Composition
3.4. Variations in the Proportion of Plant Water Uptake
3.5. Changes of Carbon Isotopes in Plant Leaves
4. Discussion
4.1. Vertical Gradients of Forest Soil Water Isotopic Composition
4.2. Differences in Seasonal Water Uptake Patterns among Species
4.3. Hydrological Niche Separation and Ecohydrological Regulation of Forest Vegetation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Cescatti, A. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Brandt, M.; Yue, Y.; Wigneron, J.P.; Tong, X.; Tian, F.; Jepsen, M.R.; Fensholt, R. Satellite-observed major greening and biomass increase in south China karst during recent decade. Earth’s Future 2018, 6, 1017–1028. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Yang, X.-D.; Wu, N.-C.; Gong, X.-W. Plant Adaptation to Extreme Environments in Drylands. Forests 2023, 14, 390. [Google Scholar] [CrossRef]
- Yang, H.B.; Yang, D.W. Derivation of climate elasticity of runoff to assess theeffects of climate change on annual runoff. Water Resour. 2011, 47. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.J.; Wang, L.X. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agric. For. Meteorol. 2020, 288–289, 108020. [Google Scholar] [CrossRef]
- Bode, S.; De Wispelaere, L.; Hemp, A. Water-isotope ecohydrology of Mount Kilimanjaro. Ecohydrology 2020, 13, e2171. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, K.; Qin, Y.; Min, X.; Xiao, J. Evolution and determinants of ecosystem services: Insights from South China karst. Ecol. Indic. 2021, 133, 108437. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.C.; Tian, F.Q. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric. For. Meteorol. 2017, 240–241, 46–57. [Google Scholar] [CrossRef]
- Tang, Y.K.; Wen, X.F.; Sun, X.M. The limiting effect of deep soil water on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought. Adv. Atmos. Sci. 2014, 31, 385–395. [Google Scholar] [CrossRef]
- Fu, T.; Chen, H.; Wang, K. Structure and water storage capacity of a small karst aquifer based on stream discharge in South China. J. Hydrol. 2016, 534, 50–62. [Google Scholar] [CrossRef]
- Song, L.; Yang, B.; Liu, L.L.; Mo, Y.X.; Liu, W.J.; Meng, X.J.; Zhang, Y.J. Spatial-temporal differentiations in water use of coexisting trees from a subtropical evergreen broadleaved forest in Southwest China. Agric. For. Meteorol. 2022, 316, 108862. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Xiong, K.; He, Q.; Li, Y.; Li, K. Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China. Catena 2022, 217, 106483. [Google Scholar] [CrossRef]
- Brinkmann, N.; Seeger, S.; Weiler, M. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New. Phytol. 2018, 219, 1300–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, L.; da Costa, A.C.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Xiong, K. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 856, 158538. [Google Scholar] [CrossRef]
- Nie, Y.P.; Chen, H.S.; Wang, K.L.; Tan, W.; Deng, P.Y.; Yang, J. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil. 2011, 341, 399–412. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, S.; Chen, Z.; Ruan, D.; Zhang, W.; Han, Y.; Han, L.; Wang, K.; Huang, Y.; Chen, J. Hydrological Properties of Soil and Litter Layers of Four Forest Types Restored in the Gully Erosion Area of Latosol in South China. Forests 2023, 14, 360. [Google Scholar] [CrossRef]
- Tang, Y.K.; Wu, X.; Chen, Y.M.; Wen, J.; Xie, Y.; Lu, S. Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology 2018, 11, e1943. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Xu, Q.; Xiong, K.; Chi, Y. Effects of intercropping on fractal dimension and physicochemical properties of soil in karst areas. Forests 2021, 12, 1422. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Javaux, M. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences 2017, 14, 2199–2224. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Li, X.Y.; Jiang, Z.; Chen, H. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Sci. Total Environ. 2016, 542, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Herberich, M.M.; Gayler, S.; Anand, M.; Tielbörger, K. Hydrological niche segregation of plant functional traits in an individual-based model. Ecol. Model. 2017, 356, 14–24. [Google Scholar] [CrossRef]
- Liu, W.; Chen, H.; Zou, Q.; Nie, Y. Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China: Implication for plant water adaptation under precipitation changes. Agric. Water Manag. 2021, 249, 106798. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Shepherd, G.; Helmers, M. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern US. Plant Soil 2008, 308, 69–92. [Google Scholar] [CrossRef]
- Fu, A.; Chen, Y.; Li, W. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Sci. China Earth Sci. 2014, 57, 1293–1305. [Google Scholar] [CrossRef]
- Yang, B.; Wen, X.F.; Sun, X.M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 2015, 201, 218–228. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liu, G. Dynamic Variations in Soil Moisture in an Epikarst Fissure in the Karst Rocky Desertification Area. J. Hydrol. 2020, 591, 1–12. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Estrada-Medina, H.; Allen, M.F.; Jimenez-Osornio, J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 2007, 152, 26–36. [Google Scholar] [CrossRef]
- Wen, X.; Lee, X.; Sun, X.; Wang, J.; Hu, Z.; Li, S.; Yu, G. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China. Oecologia 2012, 168, 549–561. [Google Scholar] [CrossRef]
- Schultz, N.M.; Griffis, T.J.; Lee, X.; Baker, J.M. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water. Rapid Commun. Mass Spectrom. 2011, 25, 3360–3368. [Google Scholar] [CrossRef]
- Stock, B.; Semmens, B. MixSIAR GUI User Manual v3. 1.; Scripps Institution of Oceanography, UC San Diego: San Diego, CA, USA, 2016. [Google Scholar]
- Fan, J.; Wang, Q.; Jones, S.B. Soil water depletion and recharge under different land cover in China’s Loess Plateau. Ecohydrology 2016, 9, 396–406. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Renée Brooks, J.; Barnard, H.R.; Coulombe, R.; McDonnell, J.J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 2010, 3, 100–104. [Google Scholar] [CrossRef]
- Geris, J.; Tetzlaff, D.; McDonnell, J.J. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Sci. Total. Environ. 2017, 595, 486–493. [Google Scholar] [CrossRef]
- Han, C.; Chen, N.; Zhang, C.; Liu, Y. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong mountain, northwestern China. For. Ecol. Manag. 2019, 451, 117519. [Google Scholar] [CrossRef]
- Dong, Z.; Li, S.; Zhao, Y.; Lei, J.; Wang, Y.; Li, C. Stable oxygen-hydrogen isotopes reveal water use strategies of Tamarix taklamakanensis in the Taklimakan Desert, China. J. Arid Land 2020, 12, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China:impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Xiang, W.; Si, B.C.; Biswas, A.; Li, Z. Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma 2019, 337, 773–781. [Google Scholar] [CrossRef]
- Demand, D.; Blume, T.; Weiler, M. Spatio-temporal relevance and controls of preferential flow at the landscape scale. Hydrol. Earth Syst. Sci. 2019, 23, 4869–4889. [Google Scholar] [CrossRef] [Green Version]
- Gazis, C.; Feng, X. A stable isotope study of soil water: Evidence for mixing and preferential flow paths. Geoderma 2004, 119, 97–111. [Google Scholar] [CrossRef]
- Chen, F.; Huang, C.; Lao, Q.; Zhang, S.; Chen, C.; Zhou, X.; Zhu, Q. Typhoon control of precipitation dual isotopes in southern China and its palaeoenvironmental implications. J. Geophys. Res. Atmos. 2021, 126, e2020JD034336. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Sun, W.; Stievenard, M.; Jouzel, J. Relationship between δD and δ18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. Sci. China Ser. D Earth Sci. 2001, 44, 789–796. [Google Scholar] [CrossRef]
- Wu, X.; Pan, M.; Zhu, X.; Yin, J.; Wang, Z.; Zhang, M.; Cao, J. Effect of the El Niño–Southern Oscillation on hydrogen and oxygen isotope ratios of precipitation in Guilin, SW China. Isot. Environ. Health Stud. 2021, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, B.J.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef]
- Gao, X.D.; Zhao, X.N.; Wu, P.T.; Brocca, L.; Zhang, B.Q. Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma 2016, 261, 1–10. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Orchard, T.E.; Tremel, T.N. Using stable isotopes to quantify water sources for trees and shrubs in a riparian cottonwood ecosystem in flood and drought years. Hydrol. Process. 2019, 33, 3070–3083. [Google Scholar] [CrossRef]
- Leite, P.A.; Wilcox, B.P.; McInnes, K.J. Woody plant encroachment enhances soil infiltrability of a semiarid karst savanna. Environ. Res. Commun. 2020, 2, 115005. [Google Scholar] [CrossRef]
- Hoekstra, N.J.; Finn, J.A.; Hofer, D. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ18O natural abundance. Biogeosciences 2014, 11, 4493–4506. [Google Scholar] [CrossRef] [Green Version]
- Karakis, S.; Gulbranson, E.; Cameron, B. Insight into the source of grapevine water acquisition during key phenological stages using stable isotope analysis. Aust. J. Grape Wine Res. 2018, 24, 252–259. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejía-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.; Peñuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Change Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Wu, B. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, Y. α Diversity of Desert Shrub Communities and Its Relationship with Climatic Factors in Xinjiang. Forests 2023, 14, 178. [Google Scholar] [CrossRef]
- Apostolakis, A.; Schöning, I.; Michalzik, B.; Ammer, C.; Schall, P.; Hänsel, F.; Nauss, T.; Trumbore, S.; Schrumpf, M. Forest Structure and Fine Root Biomass Influence Soil CO2 Efflux in Temperate Forests under Drought. Forests 2023, 14, 411. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, A.; Wu, H.; Zhang, X. GIS-based research on climate suitable region of Loquat in Lishui, Zhejiang province of China. Environ. Res. Commun. 2022, 4, 015006. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Q.; Li, J.; Wang, Y.; Liu, X.; Hu, Y.; Chen, J. Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya japonica) plants subjected to drought stress. Mycol. Prog. 2015, 14, 1–11. [Google Scholar] [CrossRef]
- Mao, Q.; He, B.; Ma, M.; Wang, L.; Koike, T.; Agathokleous, E. Effects of biochar on Karst lime soil nutrients, soil microbial communities, and physiology of Sichuan pepper plants. Ann. Appl. Biol. 2022, 181, 357–366. [Google Scholar] [CrossRef]
- Zhang, F.; Jia, W.; Zhu, G.; Zhang, Z.; Shi, Y.; Yang, L.; Zhang, M. Using stable isotopes to investigate differences of plant water sources in subalpine habitats. Hydrol. Process. 2022, 36, e14518. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Cai, Q.; Duan, X.; Li, P.; Ren, M.; Ye, Y. Water Stress-Induced Divergence Growth of Picea schrenkiana in the Western Tianshan and Its Forcing Mechanisms. Forests 2023, 14, 354. [Google Scholar] [CrossRef]
- Taufik, M.; Torfs, P.J.; Uijlenhoet, R.; Jones, P.D.; Murdiyarso, D.; Van Lanen, H.A. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Change 2017, 7, 428. [Google Scholar] [CrossRef] [Green Version]
- Sterck, F.; Markesteijn, L.; Schieving, F.; Poorter, L. Functional traits determine trade- offs and niches in a tropical forest community. Proc. Natl. Acad. Sci. USA 2011, 108, 20627–20632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Xiong, K.; Xiao, J. Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests 2022, 13, 878. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Hutyra, L.R.; Wofsy, S.C.; Munger, J.W.; Saleska, S.R.; De Oliveira, R.C.; De Camargo, P.B. Root niche sepa-ration can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour. Res. 2012, 48, 1–21. [Google Scholar] [CrossRef] [Green Version]
- McDowell, N.G.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Karger, D.N.; Kessler, M.; Lehnert, M.; Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. 2021, 5, 854–862. [Google Scholar] [CrossRef]
- Silvertown, J.; Araya, Y.; Gowing, D. Hydrological niches in terrestrial plant communities: A review. J. Ecol. 2015, 103, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Restrepo-Coupe, N.; Levine, N.M.; Christoffersen, B.O.; Albert, L.P.; Wu, J.; Costa, M.H.; Saleska, S.R. Do dynamic global vege-tation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob. Change Biol. 2016, 23, 1–18. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Johnson, D.M.; Lachenbruch, B.; McCulloh, K.A.; Woodruff, D.R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hy-draulic capacitance. Funct. Ecol. 2009, 23, 922–930. [Google Scholar] [CrossRef]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A Review of Ecosystem Service Trade-Offs/Synergies: Enlightenment for the Optimization of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Guo, W.; Liu, H.; Wu, X. Vegetation greening despite weakening coupling between vegetation growth and temperature over the boreal region. J. Geophys. Res. Biogeosci. 2018, 123, 2376–2387. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Zou, B. A greening world enhances the surface-air temperature difference. Sci. Total Environ. 2019, 658, 385–394. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Nie, Y.; Wang, K. Dynamic variations in profile soil water on karst hillslopes in South China. Catena 2019, 172, 655–663. [Google Scholar] [CrossRef]
- Huo, G.P.; Zhao, X.N.; Gao, X.D.; Wang, S.F.; Pan, Y.H. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China. Agric. Ecosyst. Environ. 2018, 265, 392–401. [Google Scholar] [CrossRef]
- Ellsworth, P.Z.; Sternberg, L.S. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 2015, 8, 538–551. [Google Scholar] [CrossRef]
Species | Family | Life Feom | Height (m) (Mean ± SD) | DBH (cm) | Coverage Area (m2) | Sample Number |
---|---|---|---|---|---|---|
Juglans regia | Walnut genus | Arbor | 11.28 ± 3.19 | 21.48 ± 2.72 | 35.46 ± 5.31 | 49 |
Zanthoxylum bungeanum Maxim | Peppercorn genus | Small deciduous trees | 3.39 ± 0.21 | 5.52 ± 0.11 | 5.83 ± 0.19 | 55 |
Eriobotrya japonica Lindl | Loquat genus | Small deciduous trees | 2.76 ± 0.24 | 5.31 ± 0.13 | 2.86 ± 0.34 | 53 |
Lonicera japonica | Honeysuckle genus | Evergreen | 0.89 ± 0.23 | 2.31 ± 1.31 | 4.33 ± 1.29 | 60 |
Water Source Plants | Juglans regia | Zanthoxylum bungeanum Maxim | Eriobotrya japonica Lindl | Lonicera japonica | ||||
---|---|---|---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | Dry | Rainy | Dry | Rainy | |
0–30 cm | 17.9% c | 28.3% c | 29.6% b | 45.2% b | 7.1% d | 43.4% b | 53.1% a | 69.6% a |
30–60 cm | 47.2% a | 38.9% a | 45.4% a | 27.8% b | 47.6% a | 27.7% b | 30.1% b | 20.9% c |
Fissure water | 28.4% a | 27.1% a | 15.5% b | 10.4% c | 29.9% a | 18.3% b | 12.0% b | 6.9% c |
Ground water | 6.6% b | 5.9% b | 9.6% b | 16.7% a | 15.5% a | 10.6% a | 4.9% b | 2.6% b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Xiong, K.; Liu, Z. Forest Plant Water Utilization and the Eco-Hydrological Regulation in the Karst Desertification Control Drainage Area. Forests 2023, 14, 747. https://doi.org/10.3390/f14040747
Fan B, Xiong K, Liu Z. Forest Plant Water Utilization and the Eco-Hydrological Regulation in the Karst Desertification Control Drainage Area. Forests. 2023; 14(4):747. https://doi.org/10.3390/f14040747
Chicago/Turabian StyleFan, Bo, Kangning Xiong, and Ziqi Liu. 2023. "Forest Plant Water Utilization and the Eco-Hydrological Regulation in the Karst Desertification Control Drainage Area" Forests 14, no. 4: 747. https://doi.org/10.3390/f14040747
APA StyleFan, B., Xiong, K., & Liu, Z. (2023). Forest Plant Water Utilization and the Eco-Hydrological Regulation in the Karst Desertification Control Drainage Area. Forests, 14(4), 747. https://doi.org/10.3390/f14040747