Response Mechanism of Leaf Area Index and Main Nutrient Content in Mangrove Supported by Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources and Processing
2.3. Research Method
2.4. Accuracy Evaluation
3. Results
3.1. Calculation Results and Mapping
3.2. The Strength of Nutrient Content along the Three Regions
3.3. Distribution Patterns of Nutrient Content in Mangrove along the LAI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OHS | Orbita HyperSpectral |
FLAASH | Fast line-of-sight atmospheric analysis of spectral hypercubes |
PSI | Photon Systems Instruments |
LAI | Leaf area index |
MSTR | Moisture |
Chla | Chlorophyll a |
Chlb | Chlorophyll b |
TN | Total nitrogen |
TP | Total phosphorus |
TK | Total potassium |
STD | Standard Deviation |
UAV | Unmanned aerial vehicle |
References
- Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sens. 2022, 14, 4868. [Google Scholar] [CrossRef]
- Sri Rahayu Romadhoni, L.; As-syakur, A.R.; Hidayah, Z.; Budi Wiyanto, D.; Safitri, R.; Yusuf Satriyana Utama, R.; Made Sara Wijana, I.; Putra Anugrah, A.; Made Oka Guna Antara, I. Annual Characteristics of Gross Primary Productivity (GPP) in Mangrove Forest during 2016-2020 as Revealed by Sentinel-2 Remote Sensing Imagery. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 012051. [Google Scholar] [CrossRef]
- Quoc Vo, T.; Kuenzer, C.; Oppelt, N. How Remote Sensing Supports Mangrove Ecosystem Service Valuation: A Case Study in Ca Mau Province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [Google Scholar] [CrossRef]
- Thakur, S.; Mondal, I.; Ghosh, P.B.; Das, P.; De, T.K. A Review of the Application of Multispectral Remote Sensing in the Study of Mangrove Ecosystems with Special Emphasis on Image Processing Techniques. Spat. Inf. Res. 2020, 28, 39–51. [Google Scholar] [CrossRef]
- Aschbacher, J.; Ofren, R.; Delsol, J.P.; Suselo, T.B.; Vibulsresth, S.; Charrupat, T. An Integrated Comparative Approach to Mangrove Vegetation Mapping Using Advanced Remote Sensing and GIS Technologies: Preliminary Results. Hydrobiologia 1995, 295, 285–294. [Google Scholar] [CrossRef]
- Fu, C.; Song, X.; Xie, Y.; Wang, C.; Luo, J.; Fang, Y.; Cao, B.; Qiu, Z. Research on the Spatiotemporal Evolution of Mangrove Forests in the Hainan Island from 1991 to 2021 Based on SVM and Res-UNet Algorithms. Remote Sens. 2022, 14, 5554. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L. The Current Status, Potential and Challenges of Remote Sensing for Large-Scale Mangrove Studies. Int. J. Remote Sens. 2022, 43, 6824–6855. [Google Scholar] [CrossRef]
- Hu, L.; Li, W.; Xu, B. The Role of Remote Sensing on Studying Mangrove Forest Extent Change. Int. J. Remote Sens. 2018, 39, 6440–6462. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-M.; Ouyang, Y.; Zhang, R.-C.; Feng, H.-M. Multi-Feature Joint Sparse Model for the Classification of Mangrove Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2017, 6, 177. [Google Scholar] [CrossRef] [Green Version]
- Alatorre, L.C.; Sánchez-Andrés, R.; Cirujano, S.; Beguería, S.; Sánchez-Carrillo, S. Identification of Mangrove Areas by Remote Sensing: The ROC Curve Technique Applied to the Northwestern Mexico Coastal Zone Using Landsat Imagery. Remote Sens. 2011, 3, 1568–1583. [Google Scholar] [CrossRef] [Green Version]
- Perea-Ardila, M.A.; Oviedo-Barrero, F.; Leal-Villamil, J. Cartografía de Bosques de Manglar Mediante Imágenes de Sensores Remotos: Estudio de Caso Buenaventura, Colombia. Rev. Teledetec. 2019, 53, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Cintya Pradipta Hapsari, K.; Ayu Permatasari, D. Changes of Mangrove Area in Pangpang Bay, Banyuwangi 2014—2018 Using Landsat-8 Imagery. J. Phys. Conf. Ser. 2020, 1528, 012063. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Lin, G.; Lin, H. A Small-Patched Convolutional Neural Network for Mangrove Mapping at Species Level Using High-Resolution Remote-Sensing Image. Ann. GIS 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Gnanappazham, L.; Selvam, V. The Dynamics in the Distribution of Mangrove Forests in Pichavaram, South India—Perception by User Community and Remote Sensing. Geocarto Int. 2011, 26, 475–490. [Google Scholar] [CrossRef]
- Lee, C.K.F.; Duncan, C.; Nicholson, E.; Fatoyinbo, T.E.; Lagomasino, D.; Thomas, N.; Worthington, T.A.; Murray, N.J. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sens. 2021, 13, 2047. [Google Scholar] [CrossRef]
- Shulei, W.; Fengru, Z.; Huandong, C.; Yang, Z. Semantic Understanding Based on Multi-Feature Kernel Sparse Representation and Decision Rules for Mangrove Growth. Inf. Process. Manag. 2022, 59, 102813. [Google Scholar] [CrossRef]
- Buitre, M.; Zhang, H.; Lin, H. The Mangrove Forests Change and Impacts from Tropical Cyclones in the Philippines Using Time Series Satellite Imagery. Remote Sens. 2019, 11, 688. [Google Scholar] [CrossRef] [Green Version]
- Sulistiyono, N.; Tarigan, A.; Patana, P. Application of Landsat 8 Sattelite Imagery for Estimated Distribution of above Ground Carbon in Percut Sei Tuan Forest Landscape. IOP Conf. Ser. Earth Environ. Sci. 2020, 454, 012080. [Google Scholar] [CrossRef]
- Wicaksono, P. Mangrove Above-Ground Carbon Stock Mapping of Multi-Resolution Passive Remote-Sensing Systems. Int. J. Remote Sens. 2017, 38, 1551–1578. [Google Scholar] [CrossRef]
- Nurhaliza, A.P.; Damayanti, A.; Dimyati, M. Monitoring Area and Health Changes of Mangrove Forest Using Multitemporal Landsat Imagery in Taman Hutan Raya Ngurah Rai, Bali Province. IOP Conf. Ser. Earth Environ. Sci. 2021, 673, 012050. [Google Scholar] [CrossRef]
- Tian, Q.; Li, S. Mangrove Recognition and Extraction Using Multispectral Remote Sensing Data in Beibu Gulf. In Proceedings of the Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII, Honolulu, HI, USA, 24–26 September 2018; Larar, A.M., Suzuki, M., Wang, J., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 13. [Google Scholar]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic Mangrove Species Mapping with Multiple-Source Remote-Sensing Datasets Using Label Distribution Learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Pham, T.; Yokoya, N.; Bui, D.; Yoshino, K.; Friess, D. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Arfan, A.; Maru, R.; Side, S.; Abidin, M.R.; Sideng, U. Mangrove Forest Management Strategy as A Sustainable Production Forest Area in Luwu District, South Sulawesi Province, Indonesia. J. Phys. Conf. Ser. 2021, 1752, 012089. [Google Scholar] [CrossRef]
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; Zhao, F. Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sens. 2020, 12, 3120. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Zhang, R.; Ren, Y.; Wen, X. Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform. Remote Sens. 2019, 11, 2479. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Tieng, T.; Sharma, S.; MacKenzie, R.A.; Venkattappa, M.; Sasaki, N.K.; Collin, A. Mapping Mangrove Forest Cover Using Landsat-8 Imagery, Sentinel-2, Very High Resolution Images and Google Earth Engine Algorithm for Entire Cambodia. IOP Conf. Ser. Earth Environ. Sci. 2019, 266, 012010. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. An Analysis of the Early Regeneration of Mangrove Forests Using Landsat Time Series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sens. 2019, 11, 774. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.S.; Hafsa, B. Multi-Decadal Land Cover Change Analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and Remote Sensing Based Approach. Glob. Ecol. Conserv. 2022, 37, e02151. [Google Scholar] [CrossRef]
- Ma, C.; Ai, B.; Zhao, J.; Xu, X.; Huang, W. Change Detection of Mangrove Forests in Coastal Guangdong during the Past Three Decades Based on Remote Sensing Data. Remote Sens. 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhu, X. Response of Mangrove Carbon Fluxes to Drought Stress Detected by Photochemical Reflectance Index. Remote Sens. 2021, 13, 4053. [Google Scholar] [CrossRef]
- Cardenas, S.M.M.; Cohen, M.C.L.; Ruiz, D.P.C.; Souza, A.V.; Gomez-Neita, J.S.; Pessenda, L.C.R.; Culligan, N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sens. 2022, 14, 6197. [Google Scholar] [CrossRef]
- Zimudzi, E.; Sanders, I.; Rollings, N.; Omlin, C.W. Remote Sensing of Mangroves Using Unmanned Aerial Vehicles: Current State and Future Directions. J. Spat. Sci. 2021, 66, 195–212. [Google Scholar] [CrossRef]
- Heumann, B.W. Satellite Remote Sensing of Mangrove Forests: Recent Advances and Future Opportunities. Prog. Phys. Geogr. Earth Environ. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Kovacs, J.M.; de Santiago, F.F.; Bastien, J.; Lafrance, P. An Assessment of Mangroves in Guinea, West Africa, Using a Field and Remote Sensing Based Approach. Wetlands 2010, 30, 773–782. [Google Scholar] [CrossRef]
- Navarro, J.A.; Algeet, N.; Fernández-Landa, A.; Esteban, J.; Rodríguez-Noriega, P.; Guillén-Climent, M.L. Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sens. 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-M.; Yeh, H.-C. Applying Remote Sensing Techniques to Monitor Shifting Wetland Vegetation: A Case Study of Danshui River Estuary Mangrove Communities, Taiwan. Ecol. Eng. 2009, 35, 487–496. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D.; Paramanik, S. Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a Mangrove Forest. Remote Sens. 2020, 12, 1519. [Google Scholar] [CrossRef]
- Jia, P.; Huang, W.; Zhang, Z.; Cheng, J.; Xiao, Y. The Carbon Sink of Mangrove Ecological Restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. Forests 2022, 13, 1547. [Google Scholar] [CrossRef]
- Li, Q.; Wong, F.K.K.; Fung, T. Classification of Mangrove Species Using Combined WordView-3 and LiDAR Data in Mai Po Nature Reserve, Hong Kong. Remote Sens. 2019, 11, 2114. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Takeuchi, W. Estimating Mangrove Forest Gross Primary Production by Quantifying Environmental Stressors in the Coastal Area. Sci. Rep. 2022, 12, 2238. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Lucas, R.; Otero, V.; Van De Kerchove, R.; Lagomasino, D.; Satyanarayana, B.; Fatoyinbo, T.; Dahdouh-Guebas, F. Monitoring Matang’s Mangroves in Peninsular Malaysia through Earth Observations: A Globally Relevant Approach. Land Degrad Dev. 2021, 32, 354–373. [Google Scholar] [CrossRef]
- Nwobi, C.J.; Williams, M. Natural and Anthropogenic Variation of Stand Structure and Aboveground Biomass in Niger Delta Mangrove Forests. Front. For. Glob. Chang. 2021, 4, 746671. [Google Scholar] [CrossRef]
- Wicaksono, P.; Danoedoro, P.; Hartono, H.; Nehren, U.; Ribbe, L. Preliminary Work of Mangrove Ecosystem Carbon Stock Mapping in Small Island Using Remote Sensing: Above and below Ground Carbon Stock Mapping on Medium Resolution Satellite Image; Neale, C.M.U., Maltese, A., Eds.; SPIE: Prague, Czech Republic, 2011; p. 81741B. [Google Scholar]
- Sharma, R.; Mishra, D.R.; Levi, M.R.; Sutter, L.A. Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sens. 2022, 14, 2940. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, Z.; Zhang, L.; Sun, X.; Zhang, Z.; Zhang, W.; Li, X.; Zhu, Q. Response of Industrial Warm Drainage to Tide Revealed by Airborne and Sea Surface Observations. Remote Sens. 2023, 15, 205. [Google Scholar] [CrossRef]
- Guo, X.; Wang, M.; Jia, M.; Wang, W. Estimating Mangrove Leaf Area Index Based on Red-Edge Vegetation Indices: A Comparison among UAV, WorldView-2 and Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102493. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Sun, X.; Gao, Y.; Lan, Z.; Wang, Y.; Zhai, H.; Li, J.; Wang, W.; Chen, M.; et al. A New Method for Calculating Water Quality Parameters by Integrating Space–Ground Hyperspectral Data and Spectral-In Situ Assay Data. Remote Sens. 2022, 14, 3652. [Google Scholar] [CrossRef]
- Li, N.; Ning, Z.; Chen, M.; Wu, D.; Hao, C.; Zhang, D.; Bai, R.; Liu, H.; Chen, X.; Li, W.; et al. Satellite and Machine Learning Monitoring of Optically Inactive Water Quality Variability in a Tropical River. Remote Sens. 2022, 14, 5466. [Google Scholar] [CrossRef]
- Howari, F.M.; Jordan, B.R.; Bouhouche, N.; Wyllie-Echeverria, S. Field and Remote-Sensing Assessment of Mangrove Forests and Seagrass Beds in the Northwestern Part of the United Arab Emirates. J. Coast. Res. 2009, 251, 48–56. [Google Scholar] [CrossRef]
- Dai, X.; Fan, W.; Shan, Y.; Gao, Y.; Liu, C.; Nie, R.; Zhang, D.; Li, W.; Zhang, L.; Sun, X.; et al. LAI-Based Phenological Changes and Climate Sensitivity Analysis in the Three-River Headwaters Region. Remote Sens. 2022, 14, 3748. [Google Scholar] [CrossRef]
- Li, X.; Hai, Q.; Zhu, Z.; Zhang, D.; Shao, Y.; Zhao, Y.; Li, H.; Vandansambuu, B.; Ning, X.; Chen, D.; et al. Spatial and Temporal Changes in Vegetation Cover in the Three North Protection Forest Project Area Supported by GEE Cloud Platform. Forests 2023, 14, 295. [Google Scholar] [CrossRef]
- Rhyma, P.P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A.W. Integration of Normalised Different Vegetation Index and Soil-Adjusted Vegetation Index for Mangrove Vegetation Delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
Serial Number | Value | Mangrove Parameters | ||||||
---|---|---|---|---|---|---|---|---|
LAI | MSTR | Chla | Chlb | TN | TP | TK | ||
1 | Minimum | 1.46 | 38.70 | 308.01 | 120.24 | 23.55 | 1.67 | 0.73 |
2 | Maximum | 6.24 | 77.00 | 1004.46 | 348.79 | 84.69 | 7.44 | 6.63 |
3 | Average | 4.01 | 62.79 | 696.17 | 182.26 | 45.56 | 3.72 | 3.17 |
4 | Standard deviation | 1.36 | 7.92 | 175.21 | 52.37 | 21.01 | 1.82 | 1.81 |
Serial Number | Transformation Method | Process Formulas |
---|---|---|
1 | Original spectrum | |
2 | Exponential | |
3 | Multiple scattering correction | |
4 | Envelope elimination | |
5 | Logarithm | |
6 | Homogenization | |
7 | First-order differential | |
8 | Second-order differential | |
9 | Third-order differential | |
10 | Exponential after first-order differential | |
11 | Exponential after second-order differential | |
12 | Exponential after third-order differential | |
13 | Logarithm after first-order differential | |
14 | Logarithm after second-order differential | |
15 | Logarithm after third-order differential | |
16 | Homogenization after first-order differential | |
17 | Homogenization after second-order differential | |
18 | Homogenization after third-order differential | |
19 | Envelope elimination after first-order differential | |
20 | Envelope elimination after second-order differential | |
21 | Envelope elimination after third-order differential | |
22 | Multiple scattering correction after first-order differential | |
23 | Multiple scattering correction after second-order differential | |
24 | Multiple scattering correction after third-order differential |
Serial Number | Indicators | Transformation Method | Calculation Model | R2 | MRE | RMSE |
---|---|---|---|---|---|---|
1 | LAI | Exponential after third-order differential | 0.66 | 0.18 | 0.83 | |
2 | MSTR | Envelope elimination after second-order differential | 0.92 | 0.01 | 0.53 | |
3 | Chla | Exponential after second-order differential | 0.75 | 0.12 | 113.26 | |
4 | Chlb | Envelope elimination after second-order differential | 0.83 | 0.04 | 9.64 | |
5 | TN | Original spectrum | 0.56 | 0.29 | 12.97 | |
6 | TP | Exponential | 0.57 | 0.27 | 1.19 | |
7 | TK | Homogenization after first-order differential | 0.73 | 0.027 | 0.084 |
LAI | MSTR | Chla | Chlb | TN | TP | TK | |
LAI | / | 0.00 | 0.05 | 0.00 | −0.01 | 0.00 | 0.00 |
MSTR | 0.00 | / | 34.23 | 3.55 | −2.76 | 0.45 | 0.93 |
Chla | 0.05 | 34.23 | / | 45.05 | −35.97 | 7.01 | 10.81 |
Chlb | 0.00 | 3.55 | 45.05 | / | −3.31 | 0.60 | 1.10 |
TN | −0.01 | −2.76 | −35.97 | −3.31 | / | −0.47 | −0.87 |
TP | 0.00 | 0.45 | 7.01 | 0.60 | −0.47 | / | 0.14 |
TK | 0.00 | 0.93 | 10.81 | 1.10 | −0.87 | 0.14 | / |
LAI | MSTR | Chla | Chlb | TN | TP | TK | |
LAI | / | 0.20 | 0.34 | 0.10 | −0.67 | 0.34 | 0.22 |
MSTR | 0.20 | / | 0.86 | 0.40 | −0.78 | 0.81 | 0.98 |
Chla | 0.34 | 0.86 | / | 0.38 | −0.76 | 0.96 | 0.87 |
Chlb | 0.10 | 0.40 | 0.38 | / | −0.31 | 0.37 | 0.40 |
TN | −0.67 | −0.78 | −0.76 | −0.31 | / | −0.72 | −0.79 |
TP | 0.34 | 0.81 | 0.96 | 0.37 | −0.72 | / | 0.83 |
TK | 0.22 | 0.98 | 0.87 | 0.40 | −0.79 | 0.83 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, Y.; Zhang, D.; Li, X.; Gao, Y.; Zhang, L.; Wang, D.; Wang, J.; Wang, J.; Huang, J. Response Mechanism of Leaf Area Index and Main Nutrient Content in Mangrove Supported by Hyperspectral Data. Forests 2023, 14, 754. https://doi.org/10.3390/f14040754
Chen X, Yang Y, Zhang D, Li X, Gao Y, Zhang L, Wang D, Wang J, Wang J, Huang J. Response Mechanism of Leaf Area Index and Main Nutrient Content in Mangrove Supported by Hyperspectral Data. Forests. 2023; 14(4):754. https://doi.org/10.3390/f14040754
Chicago/Turabian StyleChen, Xiaohua, Yuechao Yang, Donghui Zhang, Xusheng Li, Yu Gao, Lifu Zhang, Daming Wang, Jianhua Wang, Jin Wang, and Jin Huang. 2023. "Response Mechanism of Leaf Area Index and Main Nutrient Content in Mangrove Supported by Hyperspectral Data" Forests 14, no. 4: 754. https://doi.org/10.3390/f14040754
APA StyleChen, X., Yang, Y., Zhang, D., Li, X., Gao, Y., Zhang, L., Wang, D., Wang, J., Wang, J., & Huang, J. (2023). Response Mechanism of Leaf Area Index and Main Nutrient Content in Mangrove Supported by Hyperspectral Data. Forests, 14(4), 754. https://doi.org/10.3390/f14040754