Monitoring Illegal Logging Using Google Earth Engine in Sulawesi Selatan Tropical Forest, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Data Collection
2.3. Data Analysis
2.3.1. Pre-Processing
2.3.2. Image Classification
- Forest Cover Classification
- var classifier = ee. Classifier.smileRandomForest
- 2.
- Classification of Illegal Logging Events
- var forestloss1= first_period.subtract(second_ period);
- var forestloss2= second_ period.subtract(third_ period);
2.3.3. Validation
- var Accuracy = validation.errorMatrix(‘Landcover’, ‘classification’);
- print(‘Confussion matrix’, Accuracy);
- print(‘Overall accuracy’, Accuracy.accuracy());
- print(‘Consumer accuracy’, Accuracy.consumersAccuracy());
- print(‘Producer accuracy’, Accuracy.producersAccuracy());
- print(‘Kappa statistic’, Accuracy.kappa());
3. Results and Discussion
3.1. Forest Cover Identification
3.2. Identification of Illegal Logging Events
- Legal Factors: From a legal perspective, the governing rules are considered to be inadequate and have failed to deal with the eradication of forest destruction effectively.
- Law Enforcement Factors. These factors are still insufficient considering the number of the existing forest police. The limitations of law enforcement officers in the regions and the lack of coordination cause problems in environmental law enforcement.
- Facilities and Infrastructure Factors. Law enforcement, including highly educated and skilled human workers, good organisation, and sufficient equipment and finances, among others, is difficult to realise regardless of support for adequate facilities.
- Community Factors. The social and cultural angles of society in Indonesia are divided into two, namely the upper class (rich people) and the lower class (poor people). Law enforcement between the two is also substantially different because of a different mindset and knowledge. If a person is at the bottom, then their desire or obedience to a law by a person is highly unlikely or they may be unwilling to obey the laws that have been regulated due to limited knowledge and education. Thus, the person may be unaware of the binding sanctions if violated.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsujino, R.; Yumoto, T.; Kitamura, S.; Djamaluddin, I.; Darnaedi, D. History of forest loss and degradation in Indonesia. Land Use Policy 2016, 57, 335–347. [Google Scholar] [CrossRef]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What causes deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Sunderlin, W.D.; Resosudarmo, I.A.P. Laju dan Penyebab Deforestasi di Indonesia: Penelaahan Kerancuan dan Penyelesaiannya. Laju dan Penyebab Deforestasi di Indonesia: Penelaahan Kerancuan dan Penyelesaiannya; Center for International Forestry Research: Bogor, Indonesia, 1997; Volume 9. [Google Scholar] [CrossRef]
- Kementerian Lingkungan Hidup dan Kehutanan. Status Hutan dan Kehutanan Indonesia Tahun 2020; Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2021.
- Reboredo, F. Socio-economic, environmental, and governance impacts of illegal logging. Environ. Syst. Decis. 2013, 33, 295–304. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Noi Phan, T.; Kuch, V.; Lehnert, L.W. Land cover classification using google earth engine and random forest classifier-the role of image composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Fariz, T.R.; Daeni, F.; Sultan, H. Pemetaan Perubahan Penutup Lahan Di Sub-DAS Kreo Menggunakan Machine Learning Pada Google Earth Engine. J. Sumberd. Alam Dan Lingkung. 2021, 8, 85–92. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Amani, M.; Kakooei, M.; Moghimi, A.; Ghorbanian, A.; Ranjgar, B.; Mahdavi, S.; Davidson, A.; Fisette, T.; Rollin, P.; Brisco, B.; et al. Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada. Remote Sens. 2020, 12, 3561. [Google Scholar] [CrossRef]
- Pemerintah Indonesia. Peraturan Presiden Nomor 88 Tahun 2011 Tentang Rencana Tata Ruang Pulau Sulawesi; Sekretariat Negara: Jakarta, Indonesia, 2011.
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land cover mapping using sentinel-1 SAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2016, 41, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Pi, Y.; Yang, X.; Xiong, J. A variational level set SAR image segmentation approach based on statistical model. In Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Yancho, J.M.M.; Jones, T.G.; Gandhi, S.R.; Ferster, C.; Lin, A.; Glass, L. The google earth engine mangrove mapping methodology (Geemmm). Remote Sens. 2020, 12, 3758. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Denisov, P. Radar Earth Remote Sensing Satellite Data: Generation, Processing Methods and Practical Applications in Social and Economic Spheres. In Workshop Practical Applications of The Earth Remote Sensing Technologies to Solve Social and Economic Challenges; Russian Space Systems: Moscow, Russia, 2015. [Google Scholar]
- Rao, B.R.M.; Dwivedi, R.S.; Kushwaha, S.P.S.; Bhattacharya, S.N.; Anand, J.B.; Dasgupta, S. Monitoring the spatial extent of coastal wetlands using ERS-1 SAR data. Int. J. Remote Sens. 1999, 20, 2509–2517. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34, 1–26. [Google Scholar] [CrossRef]
- Lee, J. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar] [CrossRef]
- Breimen, L. Random Forest. Mach. Learn. 2001, 45, 32. [Google Scholar]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Danoedoro, P. Pengolahan Citra Digital Teori dan Aplikasinya dalam Bidang Penginderaan Jauh; Fakultas Geografi Universitas Gadjah Mada: Jogjakarta, Indonesia, 1996. [Google Scholar]
- Vargas, C.; Itoh, T.; Koide, T.; Regal, F.; Yoshino, M.; Okonogi, H.; Padilla, K.S.; Vento, N.V.; Navarrete, C.; Rivero, E.G. Sentinel-1 Data to Support Monitoring Deforestation in Tropical Humid Forests. OSJI 2021, 6, 1–23. [Google Scholar]
- Kuck, T.N.; Silva Filho, P.F.F.; Sano, E.E.; da Bispo, P.C.; Shiguemori, E.H.; Dalagnol, R. Change detection of selective logging in the brazilian amazon using x-band sar data and pre-trained convolutional neural networks. Remote Sens. 2021, 13, 4944. [Google Scholar] [CrossRef]
- Adarme, M.O.; Prieto, J.D.; Feitosa, R.Q.; De Almeida, C.A. Improving Deforestation Detection on Tropical Rainforests Using Sentinel-1 Data and Convolutional Neural Networks. Remote Sens. 2022, 14, 3290. [Google Scholar] [CrossRef]
- Mermoz, S.; Bouvet, A.; Koleck, T.; Ballère, M.; Toan, T.L. Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data. Remote Sens. 2021, 13, 4877. [Google Scholar] [CrossRef]
- Bratic, G.; Brovelli, M.A.; Molinari, M.E. A free and open source tool to assess the accuracy of land cover maps: Implementation and application to lombardy region (Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2018, 42, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.M.; Kiefer, W.R.; Chipman, J.W. Remote Sensing and Image Interpretation; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mulyanto, L.; Jaya, I.N.S. Analisis Spasial Degradasi Hutan Dan Deforestasi: Studi Kasus Di Pt. Duta Maju Timber, Sumatera Barat (Spatial Analysis on Forest Degradation and Deforestation: A Case Study in Duta Maju Timber, West Sumatera). J. Manaj. Hutan Trop. 2004, 10, 29–42. [Google Scholar]
- Wahap, N.A.; Shafri, H.Z.M. Utilization of Google Earth Engine (GEE) for land cover monitoring over Klang Valley, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012003. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M.; Guo, Y.; Wang, X.; Xin, L. Understanding the spatial distribution of urban forests in China using Sentinel-2 images with Google Earth Engine. Forests 2019, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Rudiastuti, A.W.; Lumban-Gaol, Y.; Silalahi, F.E.S.; Prihanto, Y.; Pranowo, W.S. Implementing Random Forest Algorithm in GEE: Separation and Transferability on Built-Up Area in Central Java, Indonesia. Int. J. Inform. Vis. 2022, 6, 74–82. [Google Scholar] [CrossRef]
- Huacani, W.; Meza, N.P.; Aguirre, F.; Sanchez, D.D.; Luque, E.N. Analysis of Deforested Area Using Google Earth Engine in The Period 2001–2020 In the Apurimac Region. J. Internet e-Bus. Stud. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Sulistyono, N.; Bastian Samuel PGinting Pindi Patana Susilowati, A. Land Cover Change and Deforestation Characteristics in the Management Section of National Park (MNSP) VI Besitang, Gunung Leuser National Park. J. Sylva Indones. 2019, 2, 91–100. [Google Scholar] [CrossRef]
- Aldiansyah, S.; Mandini Mannesa, M.D.; Supriatna, S. Monitoring of Vegetation Cover Changes With Geomorphological Forms using Google Earth Engine in Kendari City. J. Geogr. Gea 2021, 21, 159–170. [Google Scholar] [CrossRef]
- Tritsch, I.; Sist, P.; da MNarvaes, I.S.; Mazzei, L.; Blanc, L.; Bourgoin, C.; Cornu, G.; Gond, V. Multiple patterns of forest disturbance and logging shape forest landscapes in Paragominas, Brazil. Forests 2016, 7, 315. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, B.; Mursyid, A.; Kurnain, A.; Suyanto, S. Analisis Faktor Penyebab dan Strategi Pencegahan Pembalakan Liar (Illegal logging) di Kabupaten Tabalong. EnviroScienteae 2010, 9, 27–43. [Google Scholar]
- Fawzi, N.I.; Helms, J.; Novianto, A.; Supianto, A.; Indrayani, A.M.; Febriani, N. Reducing illegal logging through a Chainsaw buyback and entrepreneurship program at Gunung Palung national park. For. Soc. 2020, 4, 151–161. [Google Scholar] [CrossRef]
- Muthmainnah, W.; Lestari, I. Penegakan Hukum Lingkungan Terhadap Kerusakan Lingkungan Hidup. Law 2020, 4, 1–15. [Google Scholar]
- Feng, Y.; Audy, J.F. Forestry 4.0: A framework for the forest supply chain toward industry 4.0. Gest. Prod. 2021, 27, 1–21. [Google Scholar] [CrossRef]
- Singh, R.; Gehlot, A.; Vaseem Akram, S.; Kumar Thakur, A.; Buddhi, D.; Kumar Das, P. Forest 4.0: Digitalization of forest using the Internet of Things (IoT). J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 5587–5601. [Google Scholar] [CrossRef]
- Rijal, S.; Barkey, R.A.; Nasri Nursaputra, M. Profile, level of vulnerability and spatial pattern of deforestation in Sulawesi Period of 1990 to 2018. Forests 2019, 10, 191. [Google Scholar] [CrossRef] [Green Version]
Overall Accuracy: 95.80 | |||||
Kappa Cofficient: 0.89 | |||||
Class | Reference Data | ||||
Illegal Logging Incident | Not Illegal Logging | Total | User’s Accuracy | ||
Model | Illegal Logging Incident | 360 | 11 | 371 | 97.04 |
Not Illegal Logging | 10 | 119 | 129 | 92.25 | |
Total | 370 | 130 | 500 | 189 | |
Producer Accuracy | 97 | 8 | 97 | 479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujetahid, A.; Nursaputra, M.; Soma, A.S. Monitoring Illegal Logging Using Google Earth Engine in Sulawesi Selatan Tropical Forest, Indonesia. Forests 2023, 14, 652. https://doi.org/10.3390/f14030652
Mujetahid A, Nursaputra M, Soma AS. Monitoring Illegal Logging Using Google Earth Engine in Sulawesi Selatan Tropical Forest, Indonesia. Forests. 2023; 14(3):652. https://doi.org/10.3390/f14030652
Chicago/Turabian StyleMujetahid, A., Munajat Nursaputra, and Andang Suryana Soma. 2023. "Monitoring Illegal Logging Using Google Earth Engine in Sulawesi Selatan Tropical Forest, Indonesia" Forests 14, no. 3: 652. https://doi.org/10.3390/f14030652
APA StyleMujetahid, A., Nursaputra, M., & Soma, A. S. (2023). Monitoring Illegal Logging Using Google Earth Engine in Sulawesi Selatan Tropical Forest, Indonesia. Forests, 14(3), 652. https://doi.org/10.3390/f14030652