One-Step Process for the Fabrication of Hydrophobic and Dimensional Stable Wood Using Functionalized Silica Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FSNP Suspension
2.3. Preparation of FSNP-Treated Wood Samples
2.4. Test Methods
2.4.1. Weight Percent Gain (WPG)
2.4.2. SEM/EDX Analysis
2.4.3. FT-IR Analysis
2.4.4. Water Repellency
2.4.5. Anti-Swelling-Efficiency and Swelling Anisotropy
2.4.6. Equilibrium Moisture Content (EMC)
2.4.7. Water Uptake (W)
2.4.8. Statistical Analysis of the Results
3. Results and Discussion
3.1. WPG
3.2. SEM Imaging
3.3. EDX Analysis
3.4. FT-IR Analysis
3.5. Water Repellency
3.6. Anti-Swelling-Efficiency (ASE) and Swelling Anisotropy
3.7. Equilibrium Moisture Content
3.8. Water Uptake
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 19–21. [Google Scholar]
- Mahltig, B.; Swaboda, C.; Roessler, A.; Böttcher, H. Functionalising wood by nanosol application. J. Mater. Chem. 2008, 27, 3180–3192. [Google Scholar] [CrossRef]
- Rassam, G.; Abdib, Y.; Abdia, A. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J. Exp. Nanosci. 2012, 7, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Sahin, H.T.; Mantanis, G.I. Nano-based surface treatment effects on swelling, water sorption and hardness of wood. Maderas Cienc. Tecnol. 2011, 13, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, Y.; Zhong, T.; Wu, Z.; Zhan, X.; Ye, J. Thermal insulation and hydrophobization of wood impregnated with silica aerogel powder. J. Wood Sci. 2020, 66, 81. [Google Scholar] [CrossRef]
- Soytürk, E.E.; Kartal, S.N.; Onses, M.S.; Celik, N. Preliminary evaluation of polydimethylsiloxane and hydrophobic silica nanoparticles to improve water repellency and boron leachability in wood. Eur. J. Wood Wood Prod. 2023, 81, 89–98. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, Y.; Lin, L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers 2020, 12, 1632. [Google Scholar] [CrossRef]
- Liang, J.; Li, D.; Wang, D.; Liu, K.; Chen, L. Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification. Appl. Surf. Sci. 2014, 293, 265–270. [Google Scholar] [CrossRef]
- Paul, B.; Martens, W.N.; Frost, R.L. Surface modification of alumina nanofibres for the selective adsorption of alachlor and imazaquin herbicides. Colloid Interface Sci. 2011, 360, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Saleema, N.; Sarkar, D.; Gallant, D.; Paynter, R.; Chen, X.-G. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Appl. Mater. Interfaces 2011, 3, 4775–4781. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Piao, C. From hydrophilicity to hydrophobicity: A critical review—Part II: Hydrophobic conversion. Wood Fiber Sci. 2011, 43, 41–56. [Google Scholar]
- Kryński, K.; Kowaluk, G. Application of beeswax as a hydrophobic agent in MDF technology. Ann. Wars. Univ. Life Sci. SGGW 2021, 114, 59–69. [Google Scholar] [CrossRef]
- Athauda, T.J.; Decker, D.S.; Ozer, R.R. Effect of surface metrology on the wettability of SiO2 nanoparticle coating. Mater. Lett. 2012, 67, 338–341. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Fluorine based superhydrophobic coatings. Appl. Sci. 2012, 2, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Cai, Z.; Wang, W.; Ge, F. Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf. Coat. Technol. 2010, 204, 1556–1561. [Google Scholar] [CrossRef]
- Xu, L.; He, J. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir 2012, 28, 7512–7518. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Niu, H.; Gestos, A.; Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 2013, 23, 1664–1670. [Google Scholar] [CrossRef]
- Chang, K.-C.; Chen, Y.-K.; Chen, H. Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value. Surf. Coat. Technol. 2008, 202, 3822–3831. [Google Scholar] [CrossRef]
- Guo, M.; Kang, Z.; Li, W.; Zhang, J. A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface. Surf. Coat. Technol. 2014, 239, 227–232. [Google Scholar] [CrossRef]
- Sarkar, D.; Saleema, N. One-step fabrication process of superhydrophobic green coatings. Surf. Coat. Technol. 2010, 204, 2483–2486. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Wang, S.; Wood, R.J.; Xue, Q. From natural lotus leaf to highly hard-flexible diamond-like carbon surface with superhydrophobic and good tribological performance. Surf. Coat. Technol. 2012, 206, 2258–2264. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Farazi, R.; Karimi, E.Z.; Beygi, H. Dichlorodimethylsilane mediated one-step synthesis of hydrophilic and hydrophobic silica nanoparticles. Adv. Powder Technol. 2017, 28, 932–937. [Google Scholar] [CrossRef]
- Wang, X.; Chai, Y.; Liu, J. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung 2013, 67, 667–672. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Chang, B.-S.; Lin, J.-Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Appl. Surf. Sci. 2011, 257, 7997–8002. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Cai, Y.; Li, J.; Yi, L.; Yan, X.; Li, J. Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals. Appl. Surf. Sci. 2018, 450, 102–111. [Google Scholar] [CrossRef]
- Martin, S.; Brown, P.S.; Bhush, B. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency. Adv. Colloid Interface Sci. 2017, 241, 1–23. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Wood modification with alkoxysilanes. Wood Sci. Technol. 2004, 38, 555–566. [Google Scholar] [CrossRef]
- EN 350:2016; Durability of wood and wood-based products—Testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardization: Brussels Belgium, 2016.
- Götze, J.; Möckel, R.; Langhof, N.; Hengst, M.; Klinger, M. Silicification of wood in the laboratory. Ceram. Silik. 2008, 52, 268–277. [Google Scholar]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J.; Wang, J. Flammability and physical–mechanical properties assessment of wood treated with furfuryl alcohol and nano-SiO2. Eur. J. Wood Wood Prod. 2015, 73, 457–464. [Google Scholar] [CrossRef]
- Clausen, C.A.; Yang, V.W.; Arang, R.A.; Green, F. Feasibility of nanozinc oxide as a wood preservative. Am. Wood Prot. Assoc. Proceeding 2009, 105, 255–260. [Google Scholar]
- Clausen, C.A.; Green, F.; Kartal, S.N. Weatherability and leach resistance of wood impregnated with nano-zinc oxide. Nanoscale Res. Lett. 2010, 5, 1464–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, M.H.; McIntyre, C.R. Comprehensive review of copper-based wood preservatives. For. Prod. J. 2008, 58, 21–27. [Google Scholar]
- Pandey, K.; Pitman, A. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeter. Biodegr. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Gwon, J.G.; Lee, S.Y.; Doh, G.H.; Kim, J.H. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 2010, 116, 3212–3219. [Google Scholar] [CrossRef]
- Yue, D.; Feng, Q.; Huang, X.; Zhang, X.; Chen, H. In situ fabrication of a superhydrophobic ORMOSIL coating on wood by an ammonia–HMDS vapor treatment. Coatings 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Báder, M.; Németh, R.; Sandak, J.; Sandak, A. FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose 2020, 27, 6811–6829. [Google Scholar] [CrossRef]
- Szubert, K.; Dutkiewicz, A.; Dutkiewicz, M.; Maciejewski, H. Wood protective coatings based on fluorocarbosilane. Cellulose 2019, 26, 9853–9861. [Google Scholar] [CrossRef] [Green Version]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl. Mater. Interfaces 2011, 3, 3583–3588. [Google Scholar] [CrossRef] [Green Version]
- Startek, K.; Szczurek, A.; Tran, T.N.L.; Krzak, J.; Bachmatiuk, A.; Lukowiak, A. Structural and functional properties of fluorinated silica hybrid barrier layers on flexible polymeric foil. Coatings 2021, 11, 573. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Cheng, F.; Sun, J.; Qin, Z. Modification of the wood surface properties of Tsoongiodendron odorum Chun with silicon dioxide by a sol-gel method. BioResources 2016, 11, 10273–10285. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ferrai, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Hedjazi, S.; Jamalirad, L.; Sukhtesaraie, A. Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J. Indian Acad. Wood Sci. 2014, 11, 116–121. [Google Scholar] [CrossRef]
- Devi, R.R.; Maji, T.K. Effect of nano-ZnO on thermal, mechanical, UV stability, and other physical properties of wood polymer composites. Ind. Eng. Chem. Res. 2012, 51, 3870–3880. [Google Scholar] [CrossRef]
- Soltani, M.; Najafi, A.; Yousefian, S.; Naji, H.R.; Suhaimi, B.E. Water repellent effect and dimension stability of beech wood impregnated with nano-zinc oxide. BioResources 2013, 8, 6280–6287. [Google Scholar] [CrossRef] [Green Version]
- Habibzade, S.; Taghiyari, H.R.; Omidvar, A.; Roudi, H.R. Effects of impregnation with styrene and nano-zinc oxide on fire-retarding, physical, and mechanical properties of poplar wood. CERNE 2016, 22, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ryparová, P.; Škapin, A.S.; Humar, M.; Pavlič, M.; Tywoniak, J.; Hajek, P.; Žigon, J.; Petrič, M. Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose 2016, 23, 3249–3263. [Google Scholar] [CrossRef]
- Dirna, F.C.; Rahayu, I.; Zaini, L.H.; Darmawan, W.; Prihatini, E. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. J. Korean Wood Sci. Technol. 2020, 48, 41–49. [Google Scholar] [CrossRef]
- Mantanis, G.; Papadopoulos, N.N. Reducing the thickness swelling of wood based panels by applying a nanotechnology compound. Eur. J. Wood Wood Prod. 2010, 68, 237–239. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Riedl, B.; Zhang, S.Y.; Wan, H. Effects of nanofillers on water resistance and dimensional stability of solid wood modified by melamine-urea-formaldehyde resin. Wood Fiber Sci. 2007, 39, 307–318. [Google Scholar]
- Shi, J.; Zhou, L.I.J.; Zhang, W.D. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2. Front. For. China 2007, 2, 104–109. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
Beech | Pine | |||||||
---|---|---|---|---|---|---|---|---|
FSNP0.5 | FSNP1.0 | FSNP0.5 | FSNP1.0 | |||||
WPG [%] | RET [kg/m3] | WPG [%] | RET [kg/m3] | WPG [%] | RET [kg/m3] | WPG [%] | RET [kg/m3] | |
Mean | 0.78 | 6.15 | 1.16 | 8.84 | 0.74 | 3.87 | 1.10 | 5.66 |
Min | 0.70 | 0.29 | 1.00 | 0.67 | 0.59 | 0.46 | 0.84 | 0.70 |
Max | 0.88 | 5.71 | 1.25 | 7.27 | 0.95 | 3.21 | 1.36 | 4.62 |
St. Dev. | 0.06 | 6.61 | 0.07 | 9.60 | 0.10 | 4.86 | 0.17 | 6.67 |
Var. Coeff. | 7.26% | 4.76% | 5.83% | 7.59% | 13.87% | 11.94% | 15.77% | 12.34% |
Element | [wt.%] | [at.%] | Error in wt.% |
---|---|---|---|
Carbon | 63.99 | 71.18 | 6.58 |
Oxygen | 32.39 | 27.05 | 3.41 |
Fluorine | 0.19 | 0.13 | 0.05 |
Silicon | 3.43 | 1.63 | 0.16 |
Sum: | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bak, M.; Takács, D.; Rákosa, R.; Németh, Z.I.; Németh, R. One-Step Process for the Fabrication of Hydrophobic and Dimensional Stable Wood Using Functionalized Silica Nanoparticles. Forests 2023, 14, 651. https://doi.org/10.3390/f14030651
Bak M, Takács D, Rákosa R, Németh ZI, Németh R. One-Step Process for the Fabrication of Hydrophobic and Dimensional Stable Wood Using Functionalized Silica Nanoparticles. Forests. 2023; 14(3):651. https://doi.org/10.3390/f14030651
Chicago/Turabian StyleBak, Miklós, Dávid Takács, Rita Rákosa, Zsolt István Németh, and Róbert Németh. 2023. "One-Step Process for the Fabrication of Hydrophobic and Dimensional Stable Wood Using Functionalized Silica Nanoparticles" Forests 14, no. 3: 651. https://doi.org/10.3390/f14030651
APA StyleBak, M., Takács, D., Rákosa, R., Németh, Z. I., & Németh, R. (2023). One-Step Process for the Fabrication of Hydrophobic and Dimensional Stable Wood Using Functionalized Silica Nanoparticles. Forests, 14(3), 651. https://doi.org/10.3390/f14030651