Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment
Abstract
:1. Introduction
2. Method
2.1. Instrumented Trees
2.2. Characterisation of Tree Growth and Water Status Changes from Dendrometric Data
3. Results
3.1. Dendrometric Signal Decomposition
3.2. Average Daily and Monthly Patterns
3.3. Average Seasonal Diel Dynamics
4. Discussion
4.1. Average Daily and Monthly Patterns
4.2. Average Seasonal Diel Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Cox, P.M.P.M.; Betts, R.A.R.A.; Jones, C.D.C.D.; Spall, S.A.S.A.; Totterdell, I.J.I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B.G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.; Ménard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N. The Joint UK Land Environment Simulator (JULES), Model Description–Part 1: Energy and Water Fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef] [Green Version]
- Haverd, V.; Smith, B.; Nieradzik, L.; Briggs, P.R.; Woodgate, W.; Trudinger, C.M.; Canadell, J.G.; Cuntz, M. A New Version of the CABLE Land Surface Model (Subversion Revision R4601) Incorporating Land Use and Land Cover Change, Woody Vegetation Demography, and a Novel Optimisation-Based Approach to Plant Coordination of Photosynthesis. Geosci. Model Dev. 2018, 11, 2995–3026. [Google Scholar] [CrossRef] [Green Version]
- Melton, J.R.; Arora, V.K.; Wisernig-Cojoc, E.; Seiler, C.; Fortier, M.; Chan, E.; Teckentrup, L. CLASSIC v1.0: The Open-Source Community Successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM)–Part 1: Model Framework and Site-Level Performance. Geosci. Model Dev. 2020, 13, 2825–2850. [Google Scholar] [CrossRef]
- Niu, G.; Yang, Z.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-scale Measurements. J. Geophys. Res. Atmos. 2011, 116, 15139. [Google Scholar] [CrossRef] [Green Version]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P. Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate-carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Cox, P.M. Emergent Constraints on Climate-Carbon Cycle Feedbacks. Curr. Clim. Chang. Rep. 2019, 5, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Muller, B.; Pantin, F.; Génard, M.; Turc, O.; Freixes, S.; Piques, M.; Gibon, Y. Water Deficits Uncouple Growth from Photosynthesis, Increase C Content, and Modify the Relationships between C and Growth in Sink Organs. J. Exp. Bot. 2011, 62, 1715–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatichi, S.; Leuzinger, S.; Körner, C. Moving beyond Photosynthesis: From Carbon Source to Sink-Driven Vegetation Modeling. New Phytol. 2014, 201, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Friend, A.D.; Eckes-Shephard, A.H.; Fonti, P.; Rademacher, T.T.; Rathgeber, C.B.K.; Richardson, A.D.; Turton, R.H. On the Need to Consider Wood Formation Processes in Global Vegetation Models and a Suggested Approach. Ann. For. Sci. 2019, 76, 49. [Google Scholar] [CrossRef] [Green Version]
- Potkay, A.; Trugman, A.T.; Wang, Y.; Venturas, M.D.; Anderegg, W.R.L.; Mattos, C.R.C.; Fan, Y. Coupled Whole-tree Optimality and Xylem Hydraulics Explain Dynamic Biomass Partitioning. New Phytol. 2021, 230, 2226–2245. [Google Scholar] [CrossRef]
- Cabon, A.; Kannenberg, S.A.; Arain, A.; Babst, F.; Baldocchi, D.; Belmecheri, S.; Delpierre, N.; Guerrieri, R.; Maxwell, J.T.; McKenzie, S. Cross-Biome Synthesis of Source versus Sink Limits to Tree Growth. Science 2022, 376, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Cabon, A.; Anderegg, W.R.L. Turgor-Driven Tree Growth: Scaling-up Sink Limitations from the Cell to the Forest. Tree Physiol. 2022, 42, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Gea-Izquierdo, G.; Guibal, F.; Joffre, R.; Ourcival, J.M.; Simioni, G.; Guiot, J. Modelling the Climatic Drivers Determining Photosynthesis and Carbon Allocation in Evergreen Mediterranean Forests Using Multiproxy Long Time Series. Biogeosciences 2015, 12, 3695–3712. [Google Scholar] [CrossRef] [Green Version]
- Hayat, A.; Hacket-Pain, A.J.; Pretzsch, H.; Rademacher, T.T.; Friend, A.D. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations. Front. Plant Sci. 2017, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, F.P.; Rathgeber, C.B.K.; Fournier, M.; Moulia, B. Modelling Wood Formation and Structure: Power and Limits of a Morphogenetic Gradient in Controlling Xylem Cell Proliferation and Growth. Ann. For. Sci. 2017, 74, 14. [Google Scholar] [CrossRef] [Green Version]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M. Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef]
- Babst, F.; Friend, A.D.; Karamihalaki, M.; Wei, J.; Von Arx, G.; Papale, D.; Peters, R.L. Modeling Ambitions Outpace Observations of Forest Carbon Allocation. Trends Plant Sci. 2021, 26, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Morin, H.; Saracino, A.; Motta, R.; Borghetti, M. Conifers in Cold Environments Synchronize Maximum Growth Rate of Tree-ring Formation with Day Length. New Phytol. 2006, 170, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Deslauriers, A.; Griçar, J.; Seo, J.W.; Rathgeber, C.B.K.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical Temperatures for Xylogenesis in Conifers of Cold Climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Mäkinen, H.; Prislan, P.; Rossi, S.; Del Castillo, E.M.; Campelo, F.; Vavrčík, H. Woody Biomass Production Lags Stem-Girth Increase by over One Month in Coniferous Forests. Nat. Plants 2015, 1, 15160. [Google Scholar] [CrossRef]
- Dao, M.C.E.; Rossi, S.; Walsh, D.; Morin, H.; Houle, D. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions Does Not Affect Xylem Phenology and Cell Production of Mature Black Spruce. Front. Plant Sci. 2015, 6, 877. [Google Scholar] [CrossRef] [Green Version]
- Lenz, A.; Hoch, G.; Körner, C. Early Season Temperature Controls Cambial Activity and Total Tree Ring Width at the Alpine Treeline. Plant Ecol. Divers. 2013, 6, 365–375. [Google Scholar] [CrossRef]
- Huang, J.-G.J.-G.; Zhang, Y.; Wang, M.; Yu, X.; Deslauriers, A.; Fonti, P.; Liang, E.; Mäkinen, H.; Oberhuber, W.; Rathgeber, C.B.K.C.B.K.; et al. A Critical Thermal Transition Driving Spring Phenology of Northern Hemisphere Conifers. Glob. Chang. Biol. 2023, 29, 1606–1617. [Google Scholar] [CrossRef]
- Dow, C.; Kim, A.Y.; D’Orangeville, L.; Gonzalez-Akre, E.B.; Helcoski, R.; Herrmann, V.; Harley, G.L.; Maxwell, J.T.; McGregor, I.R.; McShea, W.J. Warm Springs Alter Timing but Not Total Growth of Temperate Deciduous Trees. Nature 2022, 608, 552–557. [Google Scholar] [CrossRef] [PubMed]
- D’Orangeville, L.; Itter, M.; Kneeshaw, D.; Munger, J.W.; Richardson, A.D.; Dyer, J.M.; Orwig, D.A.; Pan, Y.; Pederson, N. Peak Radial Growth of Diffuse-Porous Species Occurs during Periods of Lower Water Availability than for Ring-Porous and Coniferous Trees. Tree Physiol. 2022, 42, 304–316. [Google Scholar] [CrossRef]
- Zweifel, R.; Haeni, M.; Buchmann, N.; Eugster, W. Are Trees Able to Grow in Periods of Stem Shrinkage? New Phytol. 2016, 211, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, R.; Sterck, F.; Braun, S.; Buchmann, N.; Eugster, W.; Gessler, A.; Häni, M.; Peters, R.L.; Walthert, L.; Wilhelm, M. Why Trees Grow at Night. New Phytol. 2021, 231, 2174–2185. [Google Scholar] [CrossRef] [PubMed]
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P. The 2018 European Heatwave Led to Stem Dehydration but Not to Consistent Growth Reductions in Forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.L.; Steppe, K.; Cuny, H.E.; De Pauw, D.J.W.; Frank, D.C.; Schaub, M.; Rathgeber, C.B.K.; Cabon, A.; Fonti, P. Turgor–a Limiting Factor for Radial Growth in Mature Conifers along an Elevational Gradient. New Phytol. 2021, 229, 213–229. [Google Scholar] [CrossRef]
- Cabon, A.; Peters, R.L.; Fonti, P.; Martínez-Vilalta, J.; De Cáceres, M. Temperature and Water Potential Co-limit Stem Cambial Activity along a Steep Elevational Gradient. New Phytol. 2020, 226, 1325–1340. [Google Scholar] [CrossRef] [PubMed]
- Oogathoo, S.; Duchesne, L.; Houle, D.; Kneeshaw, D. Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment. Sensors 2022, 22, 5155. [Google Scholar] [CrossRef]
- MFFP Classification Écologique Du Territoire Québécois. Available online: https://www.donneesquebec.ca/recherche/dataset/systeme-hierarchique-de-classification-ecologique-du-territoire (accessed on 1 March 2023).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Delisle, J.; Bernier-Cardou, M.; Labrecque, A. Extreme Cold Weather Causes the Collapse of a Population of Lambdina Fiscellaria (Lepidoptera: Geometridae) in the Laurentian Mountains of Québec, Canada. Can. Entomol. 2019, 151, 311–328. [Google Scholar] [CrossRef]
- Houle, D.; Lajoie, G.; Duchesne, L. Major Losses of Nutrients Following a Severe Drought in a Boreal Forest. Nat. Plants 2016, 2, 16187. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Côté, B.; Duchesne, L. Soil Response to a 3-Year Increase in Temperature and Nitrogen Deposition Measured in a Mature Boreal Forest Using Ion-Exchange Membranes. Environ. Monit. Assess. 2014, 186, 8191–8202. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Côté, B.; Houle, D.; Morin, H.; Duchesne, L. Increased Soil Temperature and Atmospheric N Deposition Have No Effect on the N Status and Growth of a Mature Balsam Fir Forest. Biogeosciences 2013, 10, 4627–4639. [Google Scholar] [CrossRef] [Green Version]
- D’Orangeville, L.; Côté, B.; Houle, D.; Whalen, J. Reduced Mineralizable Carbon in a Boreal Forest Soil after Three Years of Artificial Warming. Can. J. Soil Sci. 2013, 93, 567–572. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Côté, B.; Houle, D.; Morin, H.; Duchesne, L. A Three-Year Increase in Soil Temperature and Atmospheric N Deposition Has Minor Effects on the Xylogenesis of Mature Balsam Fir. Trees 2013, 27, 1525–1536. [Google Scholar] [CrossRef]
- Tumajer, J.; Scharnweber, T.; Smiljanic, M.; Wilmking, M. Limitation by Vapour Pressure Deficit Shapes Different Intra-annual Growth Patterns of Diffuse-and Ring-porous Temperate Broadleaves. New Phytol. 2022, 233, 2429–2441. [Google Scholar] [CrossRef] [PubMed]
- Deslauriers, A.; Rossi, S.; Anfodillo, T.; Saracino, A. Cambial Phenology, Wood Formation and Temperature Thresholds in Two Contrasting Years at High Altitude in Southern Italy. Tree Physiol. 2008, 28, 863–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchesne, L.; Houle, D.; D’Orangeville, L. Influence of Climate on Seasonal Patterns of Stem Increment of Balsam Fir in a Boreal Forest of Québec, Canada. Agric. For. Meteorol. 2012, 162, 108–114. [Google Scholar] [CrossRef]
- Miller, T.W.; Stangler, D.F.; Larysch, E.; Honer, H.; Seifert, T.; Kahle, H.-P. A Methodological Framework to Optimize Models Predicting Critical Dates of Xylem Phenology Based on Dendrometer Data. Dendrochronologia 2022, 72, 125940. [Google Scholar] [CrossRef]
- Rossi, S.; Anfodillo, T.; Čufar, K.; Cuny, H.E.E.; Deslauriers, A.; Fonti, P.; Frank, D.; Gričar, J.; Gruber, A.; Huang, J.-G.; et al. Pattern of Xylem Phenology in Conifers of Cold Ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 2016, 22, 3804–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carraro, V. Evidence of Threshold Temperatures for Xylogenesis in Conifers at High Altitudes. Oecologia 2007, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Boisvenue, C.; Running, S.W. Impacts of Climate Change on Natural Forest Productivity–Evidence since the Middle of the 20th Century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.T. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Churkina, G.; Running, S.W. Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems 1998, 1, 206–215. [Google Scholar] [CrossRef]
- Huang, J.G.; Ma, Q.; Rossi, S.; Biondi, F.; Deslauriers, A.; Fonti, P.; Liang, E.; Mäkinen, H.; Oberhuber, W.; Rathgeber, C.B.K.; et al. Photoperiod and Temperature as Dominant Environmental Drivers Triggering Secondary Growth Resumption in Northern Hemisphere Conifers. Proc. Natl. Acad. Sci. USA 2020, 117, 20645–20652. [Google Scholar] [CrossRef]
- Houle, D.; Bouffard, A.; Duchesne, L.; Logan, T.; Harvey, R. Projections of Future Soil Temperature and Water Content for Three Southern Quebec Forested Sites. J. Clim. 2012, 25, 7690–7701. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Duchesne, L.; Côté, B. Can the Canadian Drought Code Predict Low Soil Moisture Anomalies in the Mineral Soil? An Analysis of 15 Years of Soil Moisture Data from Three Forest Ecosystems in Eastern Canada. Ecohydrology 2016, 9, 238–247. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Vapour Pressure Deficit and Solar Radiation Are the Major Drivers of Transpiration of Balsam Fir and Black Spruce Tree Species in Humid Boreal Regions, Even during a Short-Term Drought. Agric. For. Meteorol. 2020, 291, 108063. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Tree Transpiration Well Simulated by the Canadian Land Surface Scheme (CLASS) but Not during Drought. J. Hydrol. 2022, 604, 127196. [Google Scholar] [CrossRef]
- Duchesne, L.; Houle, D. Modelling Day-to-Day Stem Diameter Variation and Annual Growth of Balsam Fir (Abies Balsamea (L.) Mill.) from Daily Climate. For. Ecol. Manage. 2011, 262, 863–872. [Google Scholar] [CrossRef]
- Havranek, W.M.; Tranquillini, W. Physiological Processes during Winter Dormancy and Their Ecological Significance. In Ecophysiology of Coniferous Forests; Smith, W.K., Hinckley, T.M., Eds.; Academic Press: Cambridge, MA, USA, 1995; pp. 95–124. [Google Scholar]
- Zweifel, R.; Häsler, R. Frost-Induced Reversible Shrinkage of Bark of Mature Subalpine Conifers. Agric. For. Meteorol. 2000, 102, 213–222. [Google Scholar] [CrossRef]
- Améglio, T.; Cochard, H.; Ewers, F.W. Stem Diameter Variations and Cold Hardiness in Walnut Trees. J. Exp. Bot. 2001, 52, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Jiang, Y.; Zhang, W.; Yang, Y.; Yang, H. Effect of Alpine Treeline Conditions on the Response of the Stem Radial Variation of Picea Meyeri Rebd. et Wils to Environmental Factors. Polish J. Ecol. 2011, 59, 729–739. [Google Scholar]
- Raven, J.A. The Quantitative Role of ‘Dark’Respiratory Processes in Heterotrophic and Photolithotrophic Plant Growth. Ann. Bot. 1976, 40, 587–602. [Google Scholar] [CrossRef]
- Amthor, J.S. The Role of Maintenance Respiration in Plant Growth. Plant. Cell Environ. 1984, 7, 561–569. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oogathoo, S.; Duchesne, L.; Houle, D.; Kneeshaw, D.; Bélanger, N. Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment. Forests 2023, 14, 802. https://doi.org/10.3390/f14040802
Oogathoo S, Duchesne L, Houle D, Kneeshaw D, Bélanger N. Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment. Forests. 2023; 14(4):802. https://doi.org/10.3390/f14040802
Chicago/Turabian StyleOogathoo, Shalini, Louis Duchesne, Daniel Houle, Daniel Kneeshaw, and Nicolas Bélanger. 2023. "Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment" Forests 14, no. 4: 802. https://doi.org/10.3390/f14040802
APA StyleOogathoo, S., Duchesne, L., Houle, D., Kneeshaw, D., & Bélanger, N. (2023). Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment. Forests, 14(4), 802. https://doi.org/10.3390/f14040802