Combination Strategies of Variables with Various Spatial Resolutions Derived from GF-2 Images for Mapping Forest Stock Volume
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. In Situ Data
3.2. Remote Sensing Data and Pre-Processing
3.3. Down-Scaled Images with Various Spatial Resolutions
3.4. Variable Extraction
3.5. Combination Strategies of Variables with Various Spatial Resolutions
4. Results
4.1. Sensitivity between Two Types of Features and Spatial Resolutions
4.2. Contributions of SFs and TFs in Mapping FSV
4.3. Combination Strategies of Variables with Various Spatial Resolutions
5. Discussion
5.1. Effect of Spatial Resolution on SFs and TFs
5.2. Contribution of the Combination of SFs and TFs in Mapping FSV
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Schimel, D.S. Terrestrial ecosystem and carbon cycle. Glob. Chang. Biol. 2006, 1, 77–91. [Google Scholar] [CrossRef]
- Toan, T.L.; Quegan, S.; Davidson, M.; Balzter, H.; Ulander, L. The biomass mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Long, J. A Combined Strategy of Improved Variable Selection and Ensemble Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest. Remote Sens. 2021, 13, 4631. [Google Scholar]
- Li, X.; Liu, Z.; Wang, G.; Long, J.; Zhang, M. Estimating the Growing Stem Volume of Chinese Pine and Larch Plantations based on Fused Optical Data Using an Improved Variable Screening Method and Stacking Algorithm. Remote Sens. 2020, 12, 871. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Kutia, M.; Sarkissian, A.J.; Lin, H.; Wang, G. Estimating the Growing Stem Volume of Coniferous Plantations Based on Random Forest Using an Optimized Variable Selection Method. Sensors 2020, 20, 7248. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time Series Quad-Polarimetric SAR Images. Sensors 2020, 20, 3957. [Google Scholar] [CrossRef]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, F.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Reis, A.; Franklin, S.; Mello, J.; Junior, F. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: A case study in Minas Gerais State, Brazil. Int. J. Remote Sens. 2019, 40, 2683–2702. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Cao, C.; Dang, Y.; Xiang, H.; Zhao, J.; Zhang, Y. Retrieval of forest growing stock volume by two different methods using Landsat TM images. Int. J. Remote Sens. 2014, 35, 29–43. [Google Scholar] [CrossRef]
- Urbazaev, M.; Thiel, C.; Migliavacca, M.; Reichstein, M.; Rodriguez, P.; Schmullius, C. Improved Multi-Sensor Satellite-Based Aboveground Biomass Estimation by Selecting Temporally Stable Forest Inventory Plots Using NDVI Time Series. Forests 2016, 7, 169. [Google Scholar] [CrossRef]
- Sergio, M.; Camarero, J.; José, M.; Natalia, M.; Marina, P.; Miquel, T.; Antonio, G.; Cesar, A.; Upasana, B.; Ahmed, E. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens. Environ. 2016, 187, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sens. 2021, 13, 2740. [Google Scholar] [CrossRef]
- Astola, M. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Yang, C.; Huang, H.E.; Wang, S. Estimation of tropical forest biomass using Landsat TM imagery and permanent plot data in Xishuangbanna, China. Int. J. Remote Sens. 2011, 32, 5741–5756. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 9, 63–105. [Google Scholar] [CrossRef]
- Li, G.; Xie, Z.; Jiang, X.; Lu, D.; Chen, E. Integration of ZiYuan-3 Multispectral and Stereo Data for Modeling Aboveground Biomass of Larch Plantations in North China. Remote Sens. 2019, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Sarker, M.; Nichol, J.; Ahmad, B.; Busu, I.; Rahman, A. Potential of Texture Measurements of Two-date Dual Polarization PALSAR Data for the Improvement of Forest Biomass Estimation. ISPRS J. Photogramm. Remote Sens. 2012, 69, 146–166. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Batistella, M. Linear Mixture Model Applied to Amazonian Vegetation Classification. Remote Sens. Environ. 2003, 87, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Dickinson, M.B.; Su, L.; Su, Z.; Yaussey, D. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons. Remote Sens. Environ. 2010, 114, 1099–1107. [Google Scholar] [CrossRef]
- Pouliot, D.; King, D.; Bell, F.; Pitt, D. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Sakar, T.; Anssi, P. Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens. Environ. 2005, 94, 256–268. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E. The spatial manifestation of forest succession in optical imagery: The potential of multiresolution imagery. Remote Sensing Environ. 2002, 82, 271–284. [Google Scholar] [CrossRef]
- Leckie, D.; Walsworth, N.; Gougeon, F. Identifying tree crown delineation shapes and need for remediation on high resolution imagery using an evidence-based approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 206–227. [Google Scholar] [CrossRef]
- Leckie, D.; Gougeon, F.A.; Walsworth, N.; Paradine, D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens. Environ. 2003, 85, 355–369. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Haralick, R. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Hou, Z.; Liu, X.; Shi, Z. Texture feature extraction of mountain economic forest using high spatial resolution remote sensing images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Ruiz, L.; Inan, I.; Baridon, J.; Lanfranco, J. Combining multispectral images and selected textural features from high resolution images to improve discrimination of forest canopies. In Proceedings of the Image and Signal Processing for Remote Sensing IV, Barcelona, Spain, 21–25 September 1998; Volume 3500, pp. 124–134. [Google Scholar]
- Gao, T.; Zhu, J.; Zheng, X.; Shang, G.; Huang, L.; Wu, S. Mapping Spatial Distribution of Larch Plantations from Multi-Seasonal Landsat-8 OLI Imagery and Multi-Scale Textures Using Random Forests. Remote Sens. 2015, 7, 1702–1720. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.; Pidgeon, A.; Radeloff, V.; Keuler, N. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Dube, T.; Sibanda, M.; Shoko, C.; Mutanga, O. Stand-volume estimation from multi-source data for coppiced and high forest Eucalyptus spp. silvicultural systems in KwaZulu-Natal, South Africa. ISPRS J. Photogramm. 2017, 132, 162–169. [Google Scholar] [CrossRef]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D.; Jagadish, B.; Das, A.K.; Mishra, D.R. A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. J. Environ. Manag. 2021, 292, 112816. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, Z.; Xu, X.; Lin, H.; Zhang, T.; Long, J. Mapping Forest Stock Volume Based on Growth Characteristics of Crown Using Multi-Temporal Landsat 8 OLI and ZY-3 Stereo Images in Planted Eucalyptus Forest. Remote Sens. 2022, 14, 5082. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving Forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Ke, Q.; Quackenbush, L. A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. Int. J. Remote Sens. 2011, 32, 3625–3647. [Google Scholar] [CrossRef]
- Gougeon, F.; Leckie, D. The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogramm Eng. Remote Sens. 2006, 72, 1287–1297. [Google Scholar] [CrossRef]
- Gougeon Francois, A.; Leckie Donald, G. Forest information extraction from high spatial resolution images using an individual tree crown approach. Quintessence 2003, 34, 749–760. [Google Scholar] [CrossRef] [Green Version]
Sensors | Spatial Resolution (m) | Bands | Number of Bands | Acquisition Data |
---|---|---|---|---|
GF-2 | 1 | Pan | 1 | 5 September 2017 |
4 | Blue, Green, Red and NIR | 4 | ||
Sentinel-2 | 10 | Blue, Green, Red and NIR | 4 | 22 September 2017 |
20 | Red Edge 1–4, SWIR 1, 2 | 6 | ||
Landsat 8 | 30 | Blue, Green, Red, NIR, SWIR 1, 2 | 6 | 21 September 2017 |
Variable Sets | RF | SVM | KNN | MLR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (m3/ha) | rRMSE (%) | R2 | RMSE (m3/ha) | rRMSE (%) | R2 | RMSE (m3/ha) | rRMSE (%) | R2 | RMSE (m3/ha) | rRMSE (%) | R2 | |
GF-2 (SF+TF, 1 m) | 73.87 | 31.32 | 0.46 | 67.47 | 30.30 | 0.52 | 72.60 | 30.78 | 0.48 | 73.19 | 31.15 | 0.47 |
GF-2 (SF+TF, 10 m) | 67.79 | 28.74 | 0.55 | 65.99 | 27.98 | 0.57 | 65.17 | 27.63 | 0.58 | 79.20 | 33.58 | 0.38 |
GF-2 (SF+TF, 20 m) | 72.48 | 30.73 | 0.48 | 68.56 | 29.07 | 0.54 | 73.49 | 31.16 | 0.47 | 75.16 | 31.87 | 0.44 |
GF-2 (SF+TF, 30 m) | 66.45 | 28.18 | 0.56 | 69.79 | 29.59 | 0.52 | 71.06 | 30.13 | 0.50 | 74.60 | 31.63 | 0.45 |
Sentinel-2 (SF+TF, 10 m) | 67.10 | 28.45 | 0.56 | 66.55 | 28.22 | 0.56 | 65.80 | 27.90 | 0.57 | 79.84 | 33.85 | 0.37 |
Sentinel-2 (SF+TF, 20 m) | 59.61 | 25.01 | 0.66 | 62.76 | 26.61 | 0.61 | 63.67 | 27.00 | 0.60 | 62.38 | 26.45 | 0.62 |
Landsat-8 (SF+TF, 30 m) | 69.79 | 29.59 | 0.52 | 71.78 | 30.43 | 0.49 | 73.59 | 31.20 | 0.47 | 81.15 | 34.41 | 0.35 |
GF-2 (SF (10 m) + TF (1 m)) | 61.21 | 25.95 | 0.63 | 58.48 | 24.80 | 0.66 | 58.13 | 24.65 | 0.66 | 65.56 | 27.80 | 0.58 |
GF-2 (SF (20 m) + TF (1 m)) | 61.38 | 26.03 | 0.63 | 61.21 | 25.95 | 0.63 | 60.04 | 25.46 | 0.64 | 67.33 | 28.55 | 0.55 |
GF-2 (SF (30 m) + TF (1 m)) | 62.30 | 26.41 | 0.62 | 58.16 | 24.66 | 0.67 | 60.39 | 25.61 | 0.64 | 64.53 | 27.36 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Long, J.; Lin, H.; Xu, X.; Liu, H.; Zhang, T.; Ye, Z.; Yang, P. Combination Strategies of Variables with Various Spatial Resolutions Derived from GF-2 Images for Mapping Forest Stock Volume. Forests 2023, 14, 1175. https://doi.org/10.3390/f14061175
Liu Z, Long J, Lin H, Xu X, Liu H, Zhang T, Ye Z, Yang P. Combination Strategies of Variables with Various Spatial Resolutions Derived from GF-2 Images for Mapping Forest Stock Volume. Forests. 2023; 14(6):1175. https://doi.org/10.3390/f14061175
Chicago/Turabian StyleLiu, Zhaohua, Jiangping Long, Hui Lin, Xiaodong Xu, Hao Liu, Tingchen Zhang, Zilin Ye, and Peisong Yang. 2023. "Combination Strategies of Variables with Various Spatial Resolutions Derived from GF-2 Images for Mapping Forest Stock Volume" Forests 14, no. 6: 1175. https://doi.org/10.3390/f14061175
APA StyleLiu, Z., Long, J., Lin, H., Xu, X., Liu, H., Zhang, T., Ye, Z., & Yang, P. (2023). Combination Strategies of Variables with Various Spatial Resolutions Derived from GF-2 Images for Mapping Forest Stock Volume. Forests, 14(6), 1175. https://doi.org/10.3390/f14061175