Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Soil Sampling
2.4. Enzyme Assay of the Sampled Soils
2.5. Incubation and Enzyme Assay of the Incubated Soils
2.6. Calculation and Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Zhou, K.; Mori, T.; Mo, J.; Zhang, W. Effects of Phosphorus and Nitrogen Fertilization on Soil Arylsulfatase Activity and Sulfur Availability of Two Tropical Plantations in Southern China. For. Ecol. Manag. 2019, 453, 117613. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Weintraub, M.N. Emerging Tools for Measuring and Modeling the in Situ Activity of Soil Extracellular Enzymes. Soil Biol. Biochem. 2008, 40, 2098–2106. [Google Scholar] [CrossRef]
- Wang, C.; Mori, T.; Mao, Q.; Zhou, K.; Wang, Z. Long-Term Phosphorus Addition Downregulates Microbial Investments on Enzyme Productions in a Mature Tropical Forest. J. Soils Sediments 2020, 20, 921–930. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wubet, T.; Bruelheide, H.; Liang, Y.; Purahong, W.; Buscot, F.; Ma, K. Tree Species Richness and Fungi in Freshly Fallen Leaf Litter: Unique Patterns of Fungal Species Composition and Their Implications for Enzymatic Decomposition. Soil Biol. Biochem. 2018, 127, 120–126. [Google Scholar] [CrossRef]
- Mori, T.; Wang, S.; Zhang, W.; Mo, J. A Potential Source of Soil Ecoenzymes: From the Phyllosphere to Soil via Throughfall. Appl. Soil Ecol. 2019, 139, 25–28. [Google Scholar] [CrossRef]
- Mori, T.; Wang, S.; Zhang, W.; Mo, J. Ecoenzyme Data in Throughfall and Rainfall in Five Subtropical Forests in Southern China. Data Brief 2019, 26, 103906. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Wang, S.; Zhou, K.; Mo, J.; Zhang, W. Ratios of Phosphatase Activity to Activities of Carbon and Nitrogen-Acquiring Enzymes in Throughfall Were Larger in Tropical Forests than a Temperate Forest. Tropics 2021, 30, 25–29. [Google Scholar] [CrossRef]
- Mori, T.; Wang, S.; Zhang, W.; Mo, J. Microbial Assembly Adapted to Low-P Soils in Three Subtropical Forests by Increasing the Maximum Rate of Substrate Conversion of Acid Phosphatases but Not by Decreasing the Half-Saturation Constant. Eur. J. Soil Biol. 2022, 108, 103377. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Belnap, J.; Findlay, S.G.; Shah, J.J.F.; Hill, B.G.; Kuehn, K.A.; Kuske, C.R.; Litvak, M.E.; Martinez, N.G.; Moorhead, D.L.; et al. Extracellular Enzyme Kinetics Scale with Resource Availability. Biogeochemistry 2014, 121, 287–304. [Google Scholar] [CrossRef]
- Schimel, J.; Becerra, C.A.; Blankinship, J. Estimating Decay Dynamics for Enzyme Activities in Soils from Different Ecosystems. Soil Biol. Biochem. 2017, 114, 5–11. [Google Scholar] [CrossRef]
- Schimel, J.P.; Weintraub, M.N. The Implications of Exoenzyme Activity on Microbial Carbon and Nitrogen Limitation in Soil: A Theoretical Model. Soil Biol. Biochem. 2003, 35, 549–563. [Google Scholar] [CrossRef]
- Allison, S.D. Soil Minerals and Humic Acids Alter Enzyme Stability: Implications for Ecosystem Processes. Biogeochemistry 2006, 81, 361–373. [Google Scholar] [CrossRef]
- Wright, S.J.; Yavitt, J.B.; Wurzburger, N.; Turner, B.I.; Tanner, E.V.J.; Sayer, E.J.; Santiago, L.S.; Kaspari, M.; Hedin, L.O.; Harms, K.E.; et al. Potassium, Phosphorus, or Nitrogen Limit Root Allocation, Tree Growth, or Litter Production in a Lowland Tropical Forest. Ecology 2011, 92, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Clare, S.; Mack, M.C.; Brooks, M. A Direct Test of Nitrogen and Phosphorus Limitation to Net Primary Productivity in a Lowland Tropical Wet Forest. Ecology 2013, 94, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.C.; Townsend, A.R.; Schmidt, S.K. Phosphorus Limitation of Microbial Processes in Moist Tropical Forests: Evidence from Short-Term Laboratory Incubations and Field Studies. Ecosystems 2002, 5, 680–691. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.; Fang, Y.; Li, D.; Wang, H. Nitrogen Addition Reduces Soil Respiration in a Mature Tropical Forest in Southern China. Glob. Chang. Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Mori, T.; Ohta, S.; Ishizuka, S.; Konda, R.; Wicaksono, A. Effects of Phosphorus Application on Root Respiration and Heterotrophic Microbial Respiration in Acacia Mangium Plantation Soil. Tropics 2013, 310, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Kaspari, M.; Garcia, M.N.; Harms, K.E.; Santana, M.; Wright, S.J.; Yavitt, J.B. Multiple Nutrients Limit Litterfall and Decomposition in a Tropical Forest. Ecol. Lett. 2008, 11, 35–43. [Google Scholar] [CrossRef]
- Mori, T.; Ishizuka, S.; Konda, R.; Wicaksono, A.; Heriyanto, J. Phosphorus Addition Reduced Microbial Respiration during the Decomposition of Acacia Mangium Litter in South Sumatra, Indonesia. Tropics 2015, 24, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Mo, J.; Peng, S.; Li, Z.; Wang, H. Cumulative Effects of Nitrogen Additions on Litter Decomposition in Three Tropical Forests in Southern China. Plant Soil 2007, 297, 233–242. [Google Scholar] [CrossRef]
- Mori, T.; Zhou, K.; Wang, C.; Wang, S.; Wang, Y.; Zheng, M.; Lu, X.; Zhang, W.; Mo, J. Effects of 14-Year Continuous Nitrogen Addition on Soil Arylsulfatase and Phosphodiesterase Activities in a Mature Tropical Forest. Glob. Ecol. Conserv. 2020, 22, e00934. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, X.; Jing, X.; Zhu, B. A Meta-Analysis of Soil Extracellular Enzyme Activities in Response to Global Change. Soil Biol. Biochem. 2018, 123, 21–32. [Google Scholar] [CrossRef]
- Mori, T. Greater Impacts of Phosphorus Fertilization on Soil Phosphatase Activity in Tropical Forests than in Non-Tropical Natural Terrestrial Ecosystems: A Meta-Analysis. Pedobiologia 2022, 91-92, 150808. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil Extracellular Enzyme Activities, Soil Carbon and Nitrogen Storage under Nitrogen Fertilization: A Meta-Analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, D.; Zhao, J.; Xiao, K.; Wang, K. Effects of Nitrogen Addition on Activities of Soil Nitrogen Acquisition Enzymes: A Meta-Analysis. Agric. Ecosyst. Environ. 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Mori, T. The Ratio of β-1,4-Glucosidase Activity to Phosphomonoesterase Activity Remains Low in Phosphorus-Fertilized Tropical Soils: A Meta-Analysis. Appl. Soil Ecol. 2022, 180, 104635. [Google Scholar] [CrossRef]
- Marklein, A.R.; Houlton, B.Z. Nitrogen Inputs Accelerate Phosphorus Cycling Rates across a Wide Variety of Terrestrial Ecosystems. New Phytol. 2012, 193, 696–704. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Richter, A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. The Effect of Global Change on Soil Phosphatase Activity. Glob. Chang. Biol. 2021, 27, 5989–6003. [Google Scholar] [CrossRef]
- Allison, S.D.; Czimczik, C.I.; Treseder, K.K. Microbial Activity and Soil Respiration under Nitrogen Addition in Alaskan Boreal Forest. Glob. Chang. Biol. 2008, 14, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Olander, L.P.; Vitousek, P.M. Regulation of Soil Phosphatase and Chitinase Activity by N and P Availability. Biogeochemistry 2000, 49, 175–190. [Google Scholar] [CrossRef]
- Houlton, B.Z.; Wang, Y.P.; Vitousek, P.M.; Field, C.B. A Unifying Framework for Dinitrogen Fixation in the Terrestrial Biosphere. Nature 2008, 454, 327–330. [Google Scholar] [CrossRef]
- Mori, T.; Imai, N.; Yokoyama, D. Effects of Nitrogen and Phosphorus Fertilization on the Ratio of Activities of Carbon-Acquiring to Nitrogen-Acquiring Enzymes in a Primary Lowland Tropical Rainforest in Borneo, Malaysia. Soil Sci. Plant Nutr. 2018, 64, 554–557. [Google Scholar] [CrossRef]
- Mori, T.; Imai, N.; Kitayama, K. Does Simultaneous Phosphorus Fertilization Negate the Suppressive Effect of Nitrogen Fertilization on Polyphenol Oxidase Activity? Geoderma 2023, 430, 116287. [Google Scholar] [CrossRef]
- Bonner, M.T.L.; Castro, D.; Schneider, A.N.; Sundström, G.; Hurry, V.; Street, N.R.; Näsholm, T. Why Does Nitrogen Addition to Forest Soils Inhibit Decomposition? Soil Biol. Biochem. 2019, 137, 107570. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad Shah, J.J. Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment. Nature 2009, 462, 795–799. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L.; Hill, B.H.; Weintraub, M.N. Vector Analysis of Ecoenzyme Activities Reveal Constraints on Coupled C, N and P Dynamics. Soil Biol. Biochem. 2016, 93, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Mori, T.; Mo, J.; Zhang, W. The Responses of Carbon-and Nitrogen-Acquiring Enzymes to Nitrogen and Phosphorus Additions in Two Plantations in Southern China. J. For. Res. 2020, 31, 1319–1324. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Luo, Y.; Rafique, R.; Chen, H.; Huang, J.; Mo, J. Responses of Nitrous Oxide Emissions to Nitrogen and Phosphorus Additions in Two Tropical Plantations with N-Fixing vs. Non-N-Fixing Tree Species. Biogeosciences 2014, 11, 4941–4951. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Wang, S.; Wang, C.; Mo, J. Is Microbial Biomass Measurement by the Chloroform Fumigation Extraction Method Biased by Experimental Addition of N and P? iForest-Biogeosci. For. 2021, 14, 408–412. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Liu, L.; Fu, S.; Chen, H.; Huang, J.; Lu, X.; Liu, Z.; Mo, J. Large Difference of Inhibitive Effect of Nitrogen Deposition on Soil Methane Oxidation between Plantations with N-Fixing Tree Species and Non-N-Fixing Tree Species. J. Geophys. Res. D Atmos. 2012, 117, G00N16. [Google Scholar] [CrossRef]
- Bell, C.W.; Fricks, B.E.; Rocca, J.D.; Steinweg, J.M.; McMahon, S.K.; Wallenstein, M.D. High-Throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. J. Vis. Exp. 2013, 81, e50961. [Google Scholar]
- Mori, T.; Ohta, S.; Ishizuka, S.; Konda, R. Effects of Phosphorus Addition on N2O and NO Emissions from Soils of an Acacia Mangium Plantation. Soil Sci. Plant Nutr. 2010, 56, 782–788. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing. Statistical; R Foundation for Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 1 June 2023).
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of Soil Enzyme Activity at Global Scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [Green Version]
- Waring, B.G.; Weintraub, S.R.; Sinsabaugh, R.L. Ecoenzymatic Stoichiometry of Microbial Nutrient Acquisition in Tropical Soils. Biogeochemistry 2014, 117, 101–113. [Google Scholar] [CrossRef]
- Mori, T.; Aoyagi, R. Does Anthropogenic Phosphorus Input Reduce Soil Microbial Resource Allocation to Acquire Nitrogen Relative to Carbon ? Eurasian J. Soil Sci. 2019, 8, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Rosinger, C.; Rousk, J.; Sandén, H. Can Enzymatic Stoichiometry Be Used to Determine Growth-Limiting Nutrients for Microorganisms?—A Critical Assessment in Two Subtropical Soils. Soil Biol. Biochem. 2019, 128, 115–126. [Google Scholar] [CrossRef]
- Mori, T. Does Ecoenzymatic Stoichiometry Really Determine Microbial Nutrient Limitations? Soil Biol. Biochem. 2020, 146, 107816. [Google Scholar] [CrossRef]
- Mori, T.; Aoyagi, R.; Kitayama, K.; Mo, J. Does the Ratio of β-1, 4-Glucosidase to β-1, 4-N-Acetylglucosaminidase Indicate the Relative Resource Allocation of Soil Microbes to C and N Acquisition? Soil Biol. Biochem. 2021, 160, 108363. [Google Scholar] [CrossRef]
- Mori, T.; Rosinger, C.; Margenot, A.J. Enzymatic C: N: P Stoichiometry: Questionable Assumptions and Inconsistencies to Infer Soil Microbial Nutrient Limitation. Geoderma 2023, 429, 116242. [Google Scholar] [CrossRef]
- Mori, T. Possibly Underestimated Microbial Carbon Limitation Determined by Enzymatic Stoichiometry Approach: Comments on “Crop Rotation Stage Has a Greater Effect than Fertilisation on Soil Microbiome Assembly and Enzymatic Stoichiometry”. Sci. Total Environ. 2022, 846, 157931. [Google Scholar] [CrossRef] [PubMed]
- Mori, T. Microbial Nutrient Limitation in Tropical Forest Soils Determined Using the V-T Model Contradicts the Traditional View That C Is the Major Limiting Element. Tropics 2022, 31, 59–63. [Google Scholar] [CrossRef]
- Camenzind, T.; Hättenschwiler, S.; Treseder, K.K.; Lehmann, A.; Rillig, M.C. Nutrient Limitation of Soil Microbial Processes in Tropical Forests. Ecol. Monogr. 2018, 88, 4–21. [Google Scholar] [CrossRef]
- Mori, T. P Fertilization Experiments Require Reinterpretation: Abiotic Elevation of Available C and N Could Influence Microbial Processes in Soil. Appl. Soil Ecol. 2023, 189, 104899. [Google Scholar] [CrossRef]
Properties | AA | EU |
---|---|---|
Soil total organic C (g kg−1) a,c | 22.1 (2.3) | 15.5 (0.9) |
Soil total N (g kg−1) a,c | 1.6 (0.1) | 1.5 (0.1) |
Soil NH4+ (mg kg−1) a,c | 16.0 (1.0) | 13.4 (2.0) |
Soil NO3- (mg kg−1) a,c | 17.8 (1.4) | 13.6 (2.6) |
DOC (µg C g−1) b | 275.6 (3.5) | 297.9 (3.6) |
DN (µg N g−1) b | 38.5 (1.1) | 41.8 (2.2) |
Soil available P (mg kg−1) a,c | 1.8 (0.2) | 1.6 (0.3) |
Soil pH a,c | 3.83 (0.03) | 3.91 (0.05) |
Fine root biomass (g m−2) a,c | 92.9 (13.6) | 74.4 (3.2) |
Standing litter-layer mass (g m−2yr−1) c | 694.1 (25) | 590.2 (14) |
Basal area (m2 ha−1) d | 12.5 | 16.7 |
Mean height of planted trees (m) e | 12.2 | 11.5 |
DBH of planted trees (cm) e | 15 | 11.1 |
Stem density (tree ha−1) e | 2076 | 1962 |
Litterfall mass (g m−2yr−1) e | 841 (58) | 870 (67) |
Stand | Properties | Con-Plot | P-Plot | NP-Plot |
---|---|---|---|---|
Soil total organic C (g kg−1) | 40.7 (3) | 45.3 (4) | 55.8 (4) | |
Soil total N (g kg−1) | 2.2 (0.1) | 2.2 (0.2) | 2.0 (0.2) | |
C:N ratio | 18.5 (1) a | 18.9 (3) ab | 27.9 (3) b | |
AA | Soil NH4+ (mg kg−1) | 9.4 (0.5) | 11.9 (0.7) | 12.2 (0.8) |
Soil NO3- (mg kg−1) | 7.7 (0.9) | 6.6 (0.4) | 11.3 (1.0) | |
MBC (µg C g−1) | 330 (31) a | 634 (38) b | 446 (34) ab | |
MBN (µg N g−1) | 67 (12) | 86 (17) | 52 (14) | |
Soil available P (mg kg−1) | 2.9 (0.3) a | 4.1 (0.5) b | 4.0 (0.1) b | |
Soil total organic C (g kg−1) | 20.9 (3) | 33.9 (2) | 33.6 (3) | |
Soil total N (g kg−1) | 1.6 (0.1) | 1.6 (0.3) | 1.7 (0.1) | |
C:N ratio | 13.1 (2) a | 21.2 (2) b | 19.8 (1) b | |
EU | Soil NH4+ (mg kg−1) | 6.7 (0.2) | 5.2 (0.8) | 6.9 (0.7) |
Soil NO3- (mg kg−1) | 5.6 (0.5) b | 4.2 (0.7) a | 6.0 (0.6) b | |
MBC (µg C g−1) | 378 (33) | 359 (26) | 350 (20) | |
MBN (µg N g−1) | 78 (8) | 47 (12) | 80 (10) | |
Soil available P (mg kg−1) | 2.6 (0.1) a | 4.1 (0.4) b | 4.0 (0.5) b |
Enzyme | Abbreviation | Substrate |
---|---|---|
β-1,4-Glucosidase | BG | MUB-β-D-glucosid |
β-1,4-Xylosidase | XYL | MUB-β-D-cellobioside |
Cellobiohydrolase | CBH | MUB-β-D-xyloside |
β-1,4-N-acetylglucosaminidase | NAG | MUB-N-acetyl-β-D-glucosaminide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Wang, S.; Peng, C.; Wang, C.; Mo, J.; Zheng, M.; Zhang, W. Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study. Forests 2023, 14, 1206. https://doi.org/10.3390/f14061206
Mori T, Wang S, Peng C, Wang C, Mo J, Zheng M, Zhang W. Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study. Forests. 2023; 14(6):1206. https://doi.org/10.3390/f14061206
Chicago/Turabian StyleMori, Taiki, Senhao Wang, Cheng Peng, Cong Wang, Jiangming Mo, Mianhai Zheng, and Wei Zhang. 2023. "Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study" Forests 14, no. 6: 1206. https://doi.org/10.3390/f14061206
APA StyleMori, T., Wang, S., Peng, C., Wang, C., Mo, J., Zheng, M., & Zhang, W. (2023). Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study. Forests, 14(6), 1206. https://doi.org/10.3390/f14061206