Effect of Samples Length on the Characteristics of Moisture Transfer and Shrinkage of Eucalyptus urophylla Wood during Conventional Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Devices
2.3. Test Method
2.3.1. Wood Drying
2.3.2. Moisture Content Determination
2.3.3. Moisture Content Distribution and Difference
2.3.4. Shrinkage
2.3.5. Statistical Analysis
3. Results and Discussion
3.1. Drying Rate
3.2. Wood Moisture Distribution and MC Difference
3.2.1. Moisture Distribution and Difference along Tangential and Radial Directions
3.2.2. Moisture Content Distribution and MC Difference along Longitudinal Direction
3.3. Moisture Transfer
3.4. Wood Shrinkage and Collapse
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Aguiar Ferreira, J.; Stape, J. Productivity gains by fertilisation in Eucalyptus urophylla clonal plantations across gradients in site and stand conditions. South. For. 2009, 71, 253–258. [Google Scholar] [CrossRef]
- Carignato, A.; Moraes, C.B.D.; Zimback, L.; Mori, E.S. Genetic Resistance to Rust of Eucalyptus urophylla Progenies. Floresta Ambiente 2018, 25. [Google Scholar] [CrossRef] [Green Version]
- Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loos, R.A.; Takahashi, E.N.; Silva, C.R.; Silva, S.R.; Hakamada, R.E.; Ferreira, J.M.d.A. The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. For. Ecol. Manag. 2010, 259, 1684–1694. [Google Scholar] [CrossRef]
- Anzum, R. Factors that affect LoRa Propagation in Foliage Medium. Procedia Comput. Sci. 2021, 194, 149–155. [Google Scholar] [CrossRef]
- Yang, L. Effect of temperature and pressure of supercritical CO2 on dewatering, shrinkage and stresses of Eucalyptus Wood. Appl. Sci. 2021, 11, 8730. [Google Scholar] [CrossRef]
- França, F.J.N.; Maciel, A.P.V.-B.; França, T.S.F.A.; da Silva, J.G.M.; Batista, D.C. Air-drying of seven clones of Eucalyptus grandis × Eucalyptus urophylla wood. BioResources 2019, 14, 6591–6607. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, Y.; Ge, L.; Yu, W. Study on suitability manufacture process of structure Eucalyptus scrimber. J. For. Eng. 2022, 7, 46–52. [Google Scholar]
- Nutto, L.; Malinovski, R.A.; Brunsmeier, M.; Schumacher Sant’Anna, F. Ergonomic aspects and productivity of different pruning tools for a first pruning lift of Eucalyptus grandis Hill ex Maiden. Silva Fenn. 2013, 47, 1026. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jin, H. Effect of heat treatment on the physic-mechanical characteristics of Eucalyptus urophylla S.T. Blake. Materials 2021, 14, 6643. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J. Study on bending characteristics of fast growing eucalyptus bookcase shelves by using burgers model. Wood Res. 2019, 64, 137–144. [Google Scholar]
- Yang, L.; Zheng, J.; Huang, N. The Characteristics of Moisture and Shrinkage of Eucalyptus urophylla × E. Grandis Wood during Conventional Drying. Materials 2022, 15, 3386. [Google Scholar] [CrossRef] [PubMed]
- Paschalina, T.; Vasiliki, K. Chemical characterization of wood and bark biomass of the invasive species of tree-of-heaven (Ailanthus altissima (Mill.) Swingle), focusing on its chemical composition horizontal variability assessment. Wood Mater. Sci. Eng. 2022, 17, 469–477. [Google Scholar]
- Tu, D.; Chen, C.; Zhou, Q.; Ou, R.; Wang, X. Research progress of thermo-mechanical compression techniques for wood products. J. For. Eng. 2021, 6, 13–20. [Google Scholar]
- Fu, Z.; Zhou, Y.; Gao, X.; Liu, H.; Zhou, F. Changes of water related properties in radiata pine wood due to heat treatment. Constr. Build. Mater. 2019, 227, 116692. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Kai, T. Alternative wood treatment with blends of linseed oil, alcohols and pyrolysis oil. J. Bioresour. Bioprod. 2022, 7, 278–287. [Google Scholar] [CrossRef]
- Li, J.; Ma, E. Influence of heat treatment and delignification on hygroscopicity limit and cell wall saturation of southern pine wood. J. For. Eng. 2021, 6, 61–68. [Google Scholar]
- Feng, X.H.; Chen, J.Y.; Yu, S.X.; Wu, Z.H.; Huang, Q.T. Mild hydrothermal modification of beech wood (Zelkova schneideriana Hand-Mzt): Its physical, structural, and mechanical properties. Eur. J. Wood Wood Prod. 2022, 80, 933–945. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, Z.; Hou, X.; Chen, Z.; Jiang, J.; Sun, J. Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods. Dry. Technol. 2019, 38, 313–320. [Google Scholar] [CrossRef]
- Lahr, F.A.; Nogueira, M.C.; Araujo, V.A.D.; Vasconcelos, J.S.; Christoforo, A.L. Physical-mechanical characterization of Eucalyptus urophylla wood. Eng. Agríc. 2017, 37, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Salas, C.; Moya, R. Kiln-, solar-, and air-drying behavior of lumber of Tectona grandis and Gmelina arborea from fast-grown plantations: Moisture content, wood color, and drying defects. Dry. Technol. 2014, 32, 301–310. [Google Scholar] [CrossRef]
- Zongying, F.; Zhao, J.; Lv, Y.; Huan, S.; Cai, Y. Stress characteristics and stress reversal mechanism of white birch (Betula platyphylla) disks under different drying conditions. Maderas Cienc. Tecnol. 2016, 18, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Chen, G.; Hong, G.; Wang, M.; Gao, J.; Chen, Y. Energy efficiency performance enhancement of industrial conventional wood drying kiln by adding forced ventilation and waste heat recovery system: A comparative study. Maderas Cienc. Tecnol. 2019, 21, 545–558. [Google Scholar] [CrossRef]
- Sepulveda-Villarroel, V.; Perez-Peña, N.; Salinas-Lira, C.; Salvo-Sepulveda, L.; Elustondo, D.; Ananias, R.A. The development of moisture and strain profiles during predrying of Eucalyptus nitens. Dry. Technol. 2016, 34, 428–436. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, Z.; He, Z.; Yi, S. Development of schedule to steaming prior to drying and its effects on Eucalyptus grandis × E. urophylla wood. Eur. J. Wood Wood Prod. 2018, 76, 591–600. [Google Scholar] [CrossRef]
- Peres, M.L.; Delucis, R.d.A.; Gatto, D.A.; Beltrame, R. Solid wood bending of Eucalyptus grandis wood plasticized by steam and boiling. Ambiente Construído 2015, 15, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Miao, P.; Zhuang, S.; Wang, X.; Xia, J.; Wu, L. Improving the dry-ability of Eucalyptus by pre-microwave or pre-freezing treatment. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2011, 35, 61–64. [Google Scholar]
- Chafe, S.C. Collapse: An Introduction; CSIRO Division of Forest Products: Canberra, Australia, 1992. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Siau, J.F. Transport Processes in Wood; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Amer, M.; Kabouchi, B.; El Alami, S.; Azize, B.; Rahouti, M.; Famiri, A.; Fidah, A. Water sorption/desorption kinetics and convective drying of Eucalyptus globulus wood. J. Korean Wood Sci. Technol. 2019, 47, 557–566. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Chun, S.K. Permeability of Tectona grandis L. as affected by wood structure. Wood Sci. Technol. 2011, 45, 487–500. [Google Scholar] [CrossRef]
- Monteiro, T.C.; Lima, J.T.; Silva, J.R.M.d.; Rezende, R.N.; Klitzke, R.J. Water flow in different directions in Corymbia citriodora wood. Maderas Cienc. Tecnol. 2020, 22, 385–394. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A. A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 2013, 47, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, T.C.; Lima, J.T.; Abreu Neto, R.; Ferreira, C.A. Importance of pits in Corymbia citriodora (Hook.) KD Hill & LAS Johnson (Myrtaceae) wood permeability. Floresta Ambiente 2020, 28, e20200012. [Google Scholar] [CrossRef]
- Baraúna, E.E.P.; Lima, J.T.; Vieira, R.d.S.; Silva, J.R.M.d.; Monteiro, T.C. Effect of anatomical and chemical structure in the permeability of Amapá wood. Cerne 2014, 20, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, Y.; Ren, R.; Chen, Y.; Gao, J. Effect of weak acid modification on the structure and properties of heat-treated Chinese fir. J. For. Eng. 2021, 6, 49–55. [Google Scholar]
- Pelit, H.; Emiroglu, F. Effect of water repellents on hygroscopicity and dimensional stability of densified fir and aspen woods. Drv. Ind. 2020, 71, 29–40. [Google Scholar] [CrossRef]
- Sedlar, T.; Šefc, B.; Drvodelić, D.; Jambreković, B.; Kučinić, M.; Ištok, I. Physical properties of juvenile wood of two paulownia hybrids. Drv. Ind. 2020, 71, 179–184. [Google Scholar] [CrossRef]
- Monteiro, T.C.; Lima, J.T.; Hein, P.R.G.; da Silva, J.R.M.; Neto, R.d.A.; Rossi, L. Drying kinetics in Eucalyptus urophylla wood: Analysis of anisotropy and region of the stem. Dry. Technol. 2022, 40, 2046–2057. [Google Scholar] [CrossRef]
- He, Z.; Ye, M.; Zhang, Y.; Wu, F.; Fu, M.; Sun, F.; Liu, X. Effect of seed size and drying temperature on the hot air drying kinetics and quality of Chinese hickory (Carya cathayensis) storage. J. Food Process. Preserv. 2021, 45, 15488. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Lyu, J.; Cao, J. Orthotropic Viscoelastic Properties of Chinese Fir Wood Saturated with Water in Frozen and Non-frozen States. For. Prod. J. 2021, 71, 77–83. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H. Study of the collapse and recovery of Eucalyptus urophydis during conventional kiln drying. Eur. J. Wood Wood Prod. 2021, 79, 129–137. [Google Scholar] [CrossRef]
- Gonya, N.; Naghizadeh, Z.; Wessels, C. An investigation into collapse and shrinkage behaviour of Eucalyptus grandis and Eucalyptus grandis-urophylla wood. Eur. J. Wood Wood Prod. 2022, 80, 139–157. [Google Scholar] [CrossRef]
Sample Length (mm) | Initial MC (%) | Final MC (%) | Drying Time (h) | Drying Rate (%.h−1) | ||||
---|---|---|---|---|---|---|---|---|
>FSP | <FSP | Total | >FSP | <FSP | Total | |||
30 | 102.1 | 15.8 | 25 | 23 | 48 | 2.85 | 0.62 | 1.80 |
100 | 98.1 | 12.5 | 48 | 28 | 76 | 1.42 | 0.63 | 1.13 |
200 | 99.7 | 17.1 | 73 | 107 | 180 | 0.95 | 0.12 | 0.46 |
SL (mm) | 100 | 200 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Middle | End | Middle | End | ||||||||
Average MC (%) | 50 | 30 | 12 | 50 | 30 | 12 | 50 | 30 | 12 | 50 | 30 | 12 |
Tangential | 28.9Aa | 16.6Bb | 9.8Dd | 18.6Gg | 4.0Hh | 1.9Ii | 31.4Aa | 32.1Bc | 1.2Ef | 21.7Gg | 4.9Hh | 0.0Ii |
Radial | 27.8Aa | 17.6Bb | 10.4Dd | 15.5Gg | 4.3Hh | 2.1Ii | 21.8Aa | 30.6Bc | 1.6Ef | 14.9Gg | 5.6Hh | 0.8Ii |
Sample Length (mm) | 100 | 200 | ||||
---|---|---|---|---|---|---|
Dimensionless Length | 0.5–0.15 | 0.5–0.15 | ||||
MC (%) | 50 | 30 | 12 | 50 | 30 | 12 |
Central layer | 20.2Aa | 19.8Aa | 10.3Aa | 12.3Ab | 22.1Aa | 1.5Ab |
Sub-central layer | 21.8Aa | 18.1Aa | 3.5Ba | 12.5Ab | 18.2Aa | 1.1Ab |
Surface layer | 9.9Ba | 7.2Ba | 2.4Ba | 4.3Bb | 4.8Bb | 0.6Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Ke, M.; Zhou, T.; Sun, X. Effect of Samples Length on the Characteristics of Moisture Transfer and Shrinkage of Eucalyptus urophylla Wood during Conventional Drying. Forests 2023, 14, 1218. https://doi.org/10.3390/f14061218
Liu H, Ke M, Zhou T, Sun X. Effect of Samples Length on the Characteristics of Moisture Transfer and Shrinkage of Eucalyptus urophylla Wood during Conventional Drying. Forests. 2023; 14(6):1218. https://doi.org/10.3390/f14061218
Chicago/Turabian StyleLiu, Honghai, Mengqing Ke, Ting Zhou, and Xinlu Sun. 2023. "Effect of Samples Length on the Characteristics of Moisture Transfer and Shrinkage of Eucalyptus urophylla Wood during Conventional Drying" Forests 14, no. 6: 1218. https://doi.org/10.3390/f14061218
APA StyleLiu, H., Ke, M., Zhou, T., & Sun, X. (2023). Effect of Samples Length on the Characteristics of Moisture Transfer and Shrinkage of Eucalyptus urophylla Wood during Conventional Drying. Forests, 14(6), 1218. https://doi.org/10.3390/f14061218