The Radial Growth of Juniperus squamata Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Tree-Ring Data
3.2. Climate Data
3.3. Data Analysis
3.4. Climate Reconstruction and Testing Methods
4. Results
4.1. Climate Change Trend
4.2. Climate-Tree Growth Response Analysis
4.3. Annual Tmean Reconstruction
5. Discussion
5.1. Chronology Statistics Characteristics
5.2. Response to Temperature
5.3. Response to Precipitation
5.4. Fluctuation Characteristics of the Reconstruction Series
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Yan, S.; Wang, L.; Zou, L.; Pan, W. Relationship between soil organic carbon and total nitrogen and soil properties under different use patterns of grassland in the Qinghai-Tibet Plateau. Ecol. Sci. 2019, 38, 105–111. [Google Scholar]
- Gao, Z.; Xie, Y.; Wang, N.; Jiang, G.; Zhou, P. Response of Three Global DEM Data Accuracy to Different Terrain Factors in Qinghai-Tibet Plateau. Bull. Soil Water Conserv. 2019, 39, 190–197. [Google Scholar]
- Feng, Z.; Li, W.; Li, P.; Xiao, C. Relief degree of land surface and its geographical meanings in the Qinghai Tibetan Plateau, China. J. Geogr. 2020, 75, 1359–1372. [Google Scholar]
- Wang, L.; Zheng, Q.; Song, Q. Study on the influence of the lower mat of the Qinghai-Tibet Plateau on summer circulation in China. J. Nanjing Inst. Meteorol. 2002, 25, 186–191. [Google Scholar]
- Xu, Y.; Zhao, Z.; Li, D. Simulation analysis of climate change in the next 50 years on the Qinghai-Tibet Plateau and along the railway. Plateau Meteorol. 2005, 24, 700–707. [Google Scholar]
- Duan, A.; Wu, G.; Zhang, Q.; Liu, Y. New evidence that climate warming on the Qinghai-Tibet Plateau is the result of intensifying greenhouse gas emissions. Chin. Sci. Bull. 2006, 51, 989–992. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Z.; Tian, L.; Zhang, F.; Duan, A.; Yang, K.; Zhang, Y.; Yang, Y. Study Progresses of the Tibet Plateau Climate System Change and Mechanism of Its Impact on East Asia. Adv. Earth Sci. 2014, 29, 207–215. [Google Scholar]
- Yang, Y.; Hu, Z.; Lu, F.; Cai, Y.; Yu, H.; Guo, R.; Fu, C.; Fan, W.; Wu, D. Progress of Recent 60 Years’ Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau. Plateau Meteorol. Syst. 2022, 41, 1–10. [Google Scholar]
- Pan, B.; Li, J. Qinghai-Tibetan Plateau: A Driver and Amplifier of the Global Climate Change—III. The effects of the uplift of Qinghai-Tibetan Plateau on Climate Changes. J. Lanzhou Univ. 1996, 32, 108–115. [Google Scholar]
- Kang, X.; Zhang, Q.; Graumlich, L.J.; Sheppard, P. Reconstruction of A 1835 a Past Climate for Dulan, Qinghai Province, Using Tree-Ring. J. Glacial Permafr. 2000, 22, 65–72. [Google Scholar]
- Smith, K.T. An organismal view of dendrochronology. Dendrochronologia 2008, 26, 185–193. [Google Scholar] [CrossRef]
- Balouet, J.C.; Smith, K.T.; Vroblesky, D.; Oudijk, G. Use of Dendrochronology and Dendrochemistry in Environmental Forensics: Does It Meet the Daubert Criteria? Environ. Forensics 2009, 10, 268–276. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.S.; Zhang, G.S.; Fan, Z.X.; Wang, X.C.; Fu, B.J. Tree ring–based minimum temperature reconstruction in the central Hengduan Mountains, China. Theor. Appl. Climatol. 2020, 141, 359–370. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Liu, G.; Fu, B.; Fan, Z.; Wang, X.; Wu, X.; Zhang, Y.; Halik, U. Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quaternary Sci. Rev. 2021, 251, 106712. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.S.; Fu, B.J.; Liu, G.H.; Zeng, F.J.; Chen, W.L.; Fan, Z.X.; Fang, K.Y.; Wu, X.C.; Wang, X.C. A 406-year non-growing season precipitation reconstruction in the southeastern Tibetan Plateau. Clim. Past 2021, 17, 2381–2392. [Google Scholar] [CrossRef]
- Creasman, P.P.; Bannister, B.; Towner, R.H.; Dean, J.S.; Leavitt, S.W. Reflections On the Foundation, Persistence, and Growth of the Laboratory of Tree-Ring Research, Circa 1930–1960. Tree-Ring Res. 2012, 68, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Cufar, K.; De Luis, M.; Berdajs, E. Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zb. Gozdarstva Lesar. 2008, 87, 123–134. [Google Scholar]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.U.; Wanner, H.; et al. 2500 Years of European Climate Variability and Human Susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [Green Version]
- D’Arrigo, R.D.; Jacoby, G.C. Northern North American tree-ring evidence for regional temperature changes after major volcanic events. Clim. Chang. 1999, 41, 1–15. [Google Scholar] [CrossRef]
- Buckley, B.M.; Wilson, R.J.; Kelly, P.E.; Larson, D.W.; Cook, E.R. Inferred summer precipitation for southern Ontario back to AD 610, as reconstructed from ring widths of Thuja occidentalis. Can. J. For. Res. 2004, 34, 2541–2553. [Google Scholar] [CrossRef]
- Youngblut, D.; Luckman, B. Maximum June–July temperatures in the southwest Yukon over the last 300 years reconstructed from tree rings. Dendrochronologia 2008, 25, 153–166. [Google Scholar] [CrossRef]
- Linderholm, H.; Niklasson, M.; Molin, T. Summer Moisture Variability in East Central Sweden Since the Mid-Eighteenth Century Recorded in Tree Rings. Geogr. Ann. Ser. A Phys. Geogr. 2004, 86, 277–287. [Google Scholar] [CrossRef]
- Buckley, B.M.; Palakit, K.; Duangsathaporn, K.; Sanguantham, P.; Prasomsin, P. Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Clim. Dyn. 2007, 29, 63–71. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.J.; Briffa, K.R.; Buntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B. Last millennium northern hemisphere summer temperatures from tree rings: Part Ⅰ: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Anchukaitis, K.J.; Wilson, R.; Briffa, K.R.; Buntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B.; et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part Ⅱ: Spatially resolved reconstructions. Quat. Sci. Rev. 2017, 163, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Marcott, S.; Shakun, J.; Clark, P.; Mix, A. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeshey, K.; Anan, P.; Supat, I.N.A. Dendroclimatic Reconstruction of Mean Annual Temperatures over Treeline Regions of Northern Bhutan Himalayas. Forests 2022, 13, 1794. [Google Scholar]
- Dahe, Q.; Stocker, T. Highlights of the IPCC Working Group 1 Fifth Assessment Report. Prog. Clim. Chang. Res. 2014, 10, 1–6. [Google Scholar]
- Pauli, H.; Gottfried, M.; Reiter, K.; Klettner, C.; Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob. Chang. Biol. 2010, 13, 147–156. [Google Scholar] [CrossRef]
- Duan, A.; Xiao, Z. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 2015, 5, 13711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, Present and Future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035 + 1–2. [Google Scholar]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 1999, 26, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Hua, W.; Huang, X.; Wang, Y.; Liu, Y.; Li, X.; Li, H. Advances of the Study on Influence of Vegetation Change over Tibetan Plateau on Regional Climate. Plateau Mt. Meteorol. Res. 2008, 28, 72–80. [Google Scholar]
- Jin, M.; Li, J.; Che, Z.; Wang, F.; Zhang, J.; Gou, X. Intra-annual radial growth responses of Qilian juniper (Juniperus przewalskii) to climate factors in the central Qilian Mountains. Acta Ecol. Sin. 2020, 40, 7699–7708. [Google Scholar]
- Yu, J.; Chen, J.; Zhou, G.; Liu, G.; Wang, Y.; Li, J.; Liu, Q. Response of Radial Growth of Abies forrestii and Picea Likiangensis to Climate Factors in the Central Hengduan Mountains, Southwest China. For. Sci. 2020, 56, 28–38. [Google Scholar]
- Guo, X.; Yu, B.; Zhang, S.; Li, J.; Wang, J.; Huang, J. Research Progress on Xylem Formation Dynamics and Its Regulation Mechanism. J. Trop. Subtrop. Bot. 2019, 27, 541–547. [Google Scholar]
- Barber, V.A.; Juday, G.P.; Finney, B.P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 2000, 405, 668–673. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Tchebakova, N.M.; Parfenova, Y.I. Genetic responses to climate and climate-change in conifers of the temperate and boreal forests. Recent Res. Dev. Hum. Genet. 2004, 1, 113–130. [Google Scholar]
- Wilmking, M.; Juday, G.P.; Barber, V.A.; Zald, H.S.J. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob. Chang. Biol. 2004, 10, 1724–1736. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 2008, 11, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kang, D.; Guo, W.; Zhao, L.; Cui, L.; Li, J. Climate sensitivity of purple cone spruce (Picea purpurea) across an altitudinal gradient on the eastern Tibetan Plateau. Dendrochronologia 2019, 56, 125586. [Google Scholar]
- Lu, X.; Liang, E. Progresses in dendrochronology of shrubs. Acta Ecol. Sin. 2013, 33, 1367–1374. [Google Scholar]
- Zhang, R.; Yuan, Y.; Wei, W.; Yu, S.; Shang, H.; Wang, L.; Chen, F. Analysis on Mean Minimum Temperature in the East Tibet from Autumn to Winter in Tree Ring of the past 400 Years. Plateau Meteorol. 2010, 29, 359–365. [Google Scholar]
- Gou, X.; Chen, F.; Yang, M.; Peng, J.; Zhang, Y.; Zhang, Y. The temperature rise in the source region of the Yellow River recorded by tree rings in the last hundred years. Collect. Abstr. 2006 Annu. Conf. Geogr. Soc. China 2006, 2, 60–61. [Google Scholar]
- Zhu, H.; Zheng, Y.; Shao, X.; Liu, X.; Xu, Y.; Liang, E. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chin. Sci. Bull. 2008, 53, 3914–3920. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Peng, X.; Ding, A.; Tian, Q.; Han, C. Research Advance of Shrub Dendrochronology in the Cold and Arid Regions of China. Prog. Earth Sci. 2020, 35, 561–567. [Google Scholar]
- Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.; Rayback, S.A.; Weijers, S.; Trant, A.J.; Tape, K.D.; Naito, A.T.; Wipf, S. Methods for measuring arctic and alpine shrub growth: A review. Earth-Sci. Rev. 2015, 140, 1–13. [Google Scholar] [CrossRef]
- Song, Y.C.; Xu, G.S. A Scheme of Vegetation Classification of Taiwan, China. Acta Bot. Sin. 2003, 45, 883–895. [Google Scholar]
- Li, Z.; Zhang, Q.; Ma, K. Tree-ring reconstruction of summer temperature for A.D. 1475–2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Clim. Chang. 2012, 110, 455–467. [Google Scholar] [CrossRef]
- Liang, H.; Lyu, L.; Wahab, M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia 2016, 37, 1–8. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Liu, B.; Shi, J.; Zhang, R.; Yuan, Y.; Griessinger, J. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Clim. Dyn. 2019, 53, 3221–3233. [Google Scholar] [CrossRef]
- Cui, X.; Ma, H.; Huang, G.; Hou, M.; Xu, M.; Zheng, G.; Cui, B.; Zhuo, L.; Liao, C. Research on the Land Suitable for Planting 6 Major Tree Species in Qinghai Province. For. Resour. Manag. 2016, 61, 74–78. [Google Scholar]
- Zhou, Y.; Wang, B.; Liu, Y.; Wang, S.; Zhou, J. Geochemical evaluation of soil quality and land-use regionalization of selenium-rich soils in cultivated area around Nangqian County, Qinghai. Resour. Environ. Arid. Areas 2020, 34, 93–101. [Google Scholar]
- Liu, H.; Shao, X. Reconstruction of early-spring temperature at Zhen’an from 1755 using tree ring chronology. Acta Meteorol. Sin. 2000, 58, 223–233. [Google Scholar]
- Liu, M.; Ma, Z. Responses of biomass allocation to simulated warming in an alpine scrubland of eastern Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2020, 41, 1421–1430. [Google Scholar]
- Zhang, T.; Yuan, Y.; He, Q.; Wei, W.; Diushen, M.; Shang, H.; Zhang, R. Development of tree-ring width chronologies and tree-growth response to climate in the mountains surrounding the Issyk-Kul Lake, Central Asia. Dendrochronologia 2014, 32, 230–236. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, T.; Zhang, L. Relative impact of climate change and grazing on NDVI variations in typical alpine desert grassland in Tibet. Acta Ecol. Sin. 2019, 39, 8494–8503. [Google Scholar]
- Wigley, T.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Marcon, A.K.; Longhi-Santos, T.; Galvão, F.; Martins, K.G.; Botosso, P.C.; Blum, C.T. Climatic Response of Cedrela fissilis Radial Growth in the Ombrophilous Mixed Forest, Paraná, Brazil. Floresta E Ambiente 2019, 26, e20180361. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Gou, X.; Deng, Y.; Yang, M.; Zhang, F. Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees 2017, 31, 393–404. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 2007, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, E.; Gričar, J.; Prislan, P.; Rossi, S.; Cufar, K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 2013, 33, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Gou, X.; Chen, F.; Li, J.; Liu, P.; Zhang, Y. Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia 2008, 26, 87–96. [Google Scholar] [CrossRef]
- Li, X.; Liang, E.; Gricar, J.; Rossi, S.; Cufar, K.; Ellison, A.M. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Sci. Bull. 2017, 62, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Zhang, Q. The Growing Period of Cypress in High Elevation Area of the Tibetan Plateau. J. Glacial Permafr. 2001, 23, 149–155. [Google Scholar]
- Gou, X.; Peng, J.; Chen, F.; Yang, M.; Levia, D.F.; Li, J. A dendrochronological analysis of maximum summer half-year temperature variations over the past 700 years on the northeastern Tibetan Plateau. Theor. Appl. Climatol. 2008, 93, 195–206. [Google Scholar] [CrossRef]
- Linderholm, H.W. Annual temperature during the past 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci. China Ser. D: Earth Sci. 2009, 52, 348–359. [Google Scholar]
- Bräuning, A. Summer temperature and summer monsoon history on the Tibetan Plateau during the last 400 years recorded by tree rings. Geophys. Res. Lett. 2004, 31, L24205. [Google Scholar] [CrossRef]
- Shao, X.; Huang, L.; Liu, H.; Liang, E.; Fang, X.; Wang, L. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Sci. China (Ser. D) 2005, 48, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S. Study on Relationship between Tree-Ring and Climate Change. Sci. Silvae Sin. 2006, 42, 100–107. [Google Scholar]
- Wang, X.; Zhang, Q.; Ma, K.; Xiao, S. A tree-ring record of 500-year dry-wet changes in northern Tibet, China. Holocene 2008, 18, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Gou, X.; Zhang, Q.; Wang, Y.; Fan, Z. May–June mean temperature reconstruction over the past 300 years based on tree rings in the Qilian Mountains of the northeastern Tibetan Plateau. IAWA J. 2009, 30, 421–434. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Fang, J. Geographical Differences in Alpine Timberline and Its Climatic Interpretation in China. Acta Geogr. Sin. 2004, 59, 871–879. [Google Scholar]
- Han, B.; Zhou, B.; Zhao, H.; Shi, M.; Zhou, H.; Niu, D.; Fu, H. Analysis of Spatiotemporal Variation of Grassland Vegetation and its Impact Factors over Three-river Resource Region. Chin. J. Grassl. 2020, 42, 77–85. [Google Scholar]
- Zhang, R.; Yuan, Y.; Wei, W.; Gou, X.; Yu, S.; Shang, H.; Chen, F.; Zhang, T.; Qin, L. Dendroclimatic reconstruction of autumn–winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD. Dendrochronologia 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Bi, Y.; Xu, J.; Yang, J.; Li, Z.; Gebrekirstos, A.; Liang, E.; Zhang, S.; Yang, Y.; Yang, Y.; Yang, X. Ring-widths of the above tree-line shrub Rhododendron reveal the change of minimum winter temperature over the past 211 years in Southwestern China. Clim. Dyn. 2017, 48, 3919–3933. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Qi, R.; Liu, T.; Li, B.; Gao, B.; Chen, X.; Zhao, Y.; Zhao, Z. Patterns of species and phylogenetic diversity in Picea purpurea forests under different levels of disturbance on the northeastern Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 30, e01779. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, Z.; Li, Z.; Keyimu, M. Climate effect on radial growth of Populus simonii in Northwest of Hebei for last four decades. Acta Ecol. Sin. 2020, 40, 9108–9119. [Google Scholar]
- Buchwal, A.; Rachlewicz, G.; Fonti, P.; Cherubini, P.; Gärtner, H. Temperature modulates intra-plant growth of Salix polaris from a High Arctic site (Svalbard). Polar Biol. 2013, 36, 1305–1318. [Google Scholar] [CrossRef] [Green Version]
- Stine, A.R.; Huybers, P. Arctic tree rings as recorders of variations in light availability. Nat. Commun. 2015, 5, 3836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yin, D.; Tian, K.; Zhang, W.; He, R.; He, W.; Sun, J.; Liu, Z. Radial growth responses of Picea Iikiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China. Chin. J. Plant Ecol. 2018, 42, 629–639. [Google Scholar]
- Shi, X.H.; Qin, N.S.; Zhu, H.F.; Shao, X.M.; Wang, Q.C.; Zhu, X.D. May-June mean maximum temperature change during 1360-2005 as reconstructed by tree rings of Sabina Tibetica in Zaduo, Qinghai Province. Chin. Sci. Bull. 2010, 55, 3023–3029. [Google Scholar] [CrossRef]
- Hou, X.; Shi, J.; Li, L.; Lu, H. Growth response of Abies fargesii to climate in Shennongjia Mount of Hubei Province, Southeastern China. Chin. J. Appl. Ecol. 2015, 26, 689–696. [Google Scholar]
- Shao, X.; Fan, J. Past climate on the west Sichuan Plateau as reconstructed from ring-widths of dragon spruce. Quat. Sci. 1999, 19, 81–89. [Google Scholar]
- Li, Z.; Liu, G.; Zhang, Q.; Hu, C.; Luo, S.; Liu, X.; He, F. Tree ring reconstruction of summer temperature variations over the past 159 years in Wolong National Natural Reserve, western Sichuan, China. J. Plant Ecol. 2010, 34, 628–641. [Google Scholar]
- Gou, X.; Chen, F.; Jacoby, G.; Cook, E.; Yang, M.; Peng, H.; Zhang, Y. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int. J. Climatol. 2007, 27, 1497–1503. [Google Scholar] [CrossRef]
- Dai, S.; Li, L.; Liu, C.; Shi, X.; Yang, Y. Characteristics and Prediction Model of Summer Drought in Qinghai Province. J. Glacial Permafr. 2012, 34, 1433–1440. [Google Scholar]
- Yang, B. Spatial and temporal patterns of climate variations over the Tibetan Plateau during the period 1300–2010. Quat. Sci. 2012, 32, 81–94. [Google Scholar]
- Panthi, S.; Fan, Z.X.; Bräuning, A. Ring widths of Rhododendron shrubs reveal a persistent winter warming in the central Himalaya. Dendrochronologia 2021, 65, 125799. [Google Scholar] [CrossRef]
r | R2 | R2adj | F | ST | Er | T |
---|---|---|---|---|---|---|
0.654 | 0.428 | 0.408 | 21.33 | 30+/30− | 0.246 | 6.88 ** |
Location | Elevation(m) | Time Length | Samples(n) | Mean Value | |
---|---|---|---|---|---|
Type | 96.25° E 31.56° N | 4309.0 | 1957–2019 | 40 | 0.93 |
SD | AR1 | Rbt | SNR | EPS | |
Juniperus squamata | 0.31 | 0.69 | 0.24 | 7.96 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Xin, Z.; Liu, J.; Huang, Y.; Keyimu, M.; Li, Z. The Radial Growth of Juniperus squamata Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century. Forests 2023, 14, 1219. https://doi.org/10.3390/f14061219
Zhao G, Xin Z, Liu J, Huang Y, Keyimu M, Li Z. The Radial Growth of Juniperus squamata Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century. Forests. 2023; 14(6):1219. https://doi.org/10.3390/f14061219
Chicago/Turabian StyleZhao, Guoqing, Zhongbao Xin, Jinhao Liu, Yanzhang Huang, Maierdang Keyimu, and Zongshan Li. 2023. "The Radial Growth of Juniperus squamata Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century" Forests 14, no. 6: 1219. https://doi.org/10.3390/f14061219
APA StyleZhao, G., Xin, Z., Liu, J., Huang, Y., Keyimu, M., & Li, Z. (2023). The Radial Growth of Juniperus squamata Showed Sharp Increase in Response to Climate Warming on the Three-River Headwaters Region of Tibetan Plateau since the Early 21st Century. Forests, 14(6), 1219. https://doi.org/10.3390/f14061219