Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data Set
2.2. Environmental Data Set
2.3. MaxEnt Modeling Process
3. Results
3.1. Performance of the Models
3.2. Environmental Variable for Mangroves and Spartina Alterniflora
3.3. Habitat Suitability of Mangroves and Spartina alterniflora
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global Blue Carbon Accumulation in Tidal Wetlands Increases with Climate Change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef] [PubMed]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Di, N.D.; Neukermans, G.; Koedam, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F. Mangroves facing climate change: Landward migration potential in response to projected scenarios of sea level rise. Biogeoences 2014, 11, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Wang, Y.; Dong, P.; Zhang, D.; Yu, W.; Ma, Z.; Chen, G.; Liu, Z.; Du, J.; Chen, B.; et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manag. 2020, 478, 118517. [Google Scholar] [CrossRef]
- Wang, G.; Singh, M.; Wang, J.; Xiao, L.; Guan, D. Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. CATENA 2021, 202, 105270. [Google Scholar] [CrossRef]
- Wang, M.; Cao, W.; Guan, Q.; Wu, G.; Wang, F. Assessing changes of mangrove forest in a coastal region of southeast China using multi-temporal satellite images. Estuar. Coast. Shelf Sci. 2018, 207, 283–292. [Google Scholar] [CrossRef]
- Xia, S.; Wang, W.; Song, Z.; Kuzyakov, Y.; Guo, L.; Van Zwieten, L.; Li, Q.; Hartley, I.P.; Yang, Y.; Wang, Y.; et al. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Glob. Chang. Biol. 2021, 27, 1627–1644. [Google Scholar] [CrossRef]
- Liu, M.; Mao, D.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Ren, C.; Zhang, Y. Rapid Invasion of Spartina alterniflora in the Coastal Zone of Mainland China: New Observations from Landsat OLI Images. Remote Sens. 2018, 10, 1933. [Google Scholar] [CrossRef] [Green Version]
- Ayres, B.; Strong, D.R. The Spartina Invasion of San Francisco Bay. Aquat. Nuis. Species 2002, 4, 38–47. [Google Scholar]
- An, S.; Gu, B.; Zhou, C.; Wang, Z.; Liu, Y. Spartina invasion in China implications for invasive species management and future research. Weed Res. 2007, 47, 183–191. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Zhong, Y.; Chen, J. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 2004, 528, 99–106. [Google Scholar] [CrossRef]
- Wang, C.; Pei, X.; Yue, S.; Wen, Y. The Response of Spartina alterniflora Biomass to Soil Factors in Yancheng, Jiangsu Province, P.R. China. Wetlands 2016, 36, 229–235. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, S.; Wei, S.; Cui, X.; Nie, M.; Huang, J.; He, Q.; Ju, R.T.; Li, B.; Chu, C. Changes in multiple environmental factors additively enhance the dominance of an exotic plant with a novel trade-off pattern. J. Ecol. 2020, 108, 1989–1999. [Google Scholar] [CrossRef]
- Xia, H.; Kong, W.; Liu, L.; Li, H.; Lin, K. Resource utilization conditions as biochar of an invasive plant Spartina alterniflora in coastal wetlands of China. GCB Bioenergy 2020, 12, 636–647. [Google Scholar] [CrossRef]
- Uddin, M.M.; Hossain, M.M.; Aziz, A.A.; Lovelock, C.E. Ecological development of mangrove plantations in the Bangladesh Delta. For. Ecol. Manag. 2022, 517, 120269. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, J.; Cui, L.; Feng, W.; Wang, Y.; Zhang, J. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 2019, 673, 502–510. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Wang, W.; Lin, C.G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 2012, 93, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Zuo, P.; Zhao, S.; Liu, C.; Wang, C.; Liang, Y. Distribution of Spartina spp. along China’s coast. Ecol. Eng. 2012, 40, 160–166. [Google Scholar] [CrossRef]
- Li, S.; Xie, T.; Pennings, S.C.; Wang, Y.; Craft, C.; Hu, M. A comparison of coastal habitat restoration projects in China and the United States. Sci. Rep. 2019, 9, 14388. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, W.; Zhang, Y.; Lin, G. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Jiang, T.T.; Pan, J.F.; Pu, X.M.; Wang, B.; Pan, J.J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 2015, 164, 265–275. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Alberdi, A.; Morrien, E.; van der Putten, W.H.; Rodriguez-Una, A.; Montoya, D. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 2020, 4, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Adame, M.F.; Hermoso, V.; Perhans, K.; Lovelock, C.E.; Herrera-Silveira, J.A. Selecting cost-effective areas for restoration of ecosystem services. Conserv. Biol. 2015, 29, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Mang, S.L.; Riehl, B.; Huang, J.; Wang, G.; Xu, L.; Huang, K.; Innes, J. Climate change impacts and forest adaptation in the Asia–Pacific region: From regional experts’ perspectives. J. For. Res. 2018, 30, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, Y.; Besnard, A.G.; Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 2018, 27, 245–256. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2017, 200, 1–19. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Xiao, N.; Shen, M.; Li, J. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Sun, C.; Wang, X.; Zheng, Y.; Shi, S.; Chen, Z.; He, Q.; Weng, X.; Jia, L. Distinct ecological habits and habitat responses to future climate change in three east and southeast Asian Sapindus species. For. Ecol. Manag. 2022, 507, 119982. [Google Scholar] [CrossRef]
- Alexandre da Silva, M.V.; Nunes Souza, J.V.; Souza, J.R.B.; Vieira, L.M. Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail Potamopyrgus antipodarum (Gray 1843). Freshw. Biol. 2019, 64, 1504–1518. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Ahmadi, K.; Heydari, M.; Karami, O.; Esmailzadeh, O.; Heung, B. Elevational shift of endangered European yew under climate change in Hyrcanian mountain forests: Rethinking conservation-restoration strategies and management. For. Ecol. Manag. 2023, 529, 120693. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Zhu, D.; Zhang, J. Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Mukul, S.A.; Alamgir, M.; Sohel, M.S.I.; Pert, P.L.; Herbohn, J.; Turton, S.M.; Khan, M.S.I.; Munim, S.A.; Reza, A.; Laurance, W.F. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 2019, 663, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Liu, H.; Jiao, F.; Lin, Z.; Xu, X. Pure, shared, and coupling effects of climate change and sea level rise on the future distribution of Spartina alterniflora along the Chinese coast. Ecol. Evol. 2019, 9, 5380–5391. [Google Scholar] [CrossRef] [Green Version]
- Waldock, C.; Stuart-Smith, R.D.; Albouy, C.; Cheung, W.W.L.; Edgar, G.J.; Mouillot, D.; Tjiputra, J.; Pellissier, L. A quantitative review of abundance-based species distribution models. Ecography 2021, 2022, 1–18. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, C.; Liu, L.; Shen, Z.; Yang, J.; Wang, Y.; Hu, J.; Wang, M.; Hu, J.; Lu, X.; et al. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Glob. Ecol. Conserv. 2021, 29, e01733. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Xu, W.; Du, Q.; Yan, S.; Cao, Y.; Liu, X.; Guan, D.X.; Ma, L.Q. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Sci. Total Environ. 2022, 803, 149864. [Google Scholar] [CrossRef]
- Liu, H.; Qi, X.; Gong, H.; Li, L.; Zhang, M.; Li, Y.; Lin, Z. Combined Effects of Global Climate Suitability and Regional Environmental Variables on the Distribution of an Invasive Marsh Species Spartina alterniflora. Estuaries Coasts 2018, 42, 99–111. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Zhang, D.; Yu, W.; Chen, G.; Xie, T.; Liu, Z.; Ma, Z.; Du, J.; Chao, B.; et al. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total Environ. 2020, 748, 142321. [Google Scholar] [CrossRef]
- Zhang, D.H.; Hu, Y.M.; Liu, M. Potential distribution of Spartinal alterniflora in China coastal areas based on MaxEnt niche model. J. Appl. Ecol. 2019, 30, 2329–2337. [Google Scholar] [CrossRef]
- Veldkornet, D.A.; Rajkaran, A. Predicting Shifts in the Geographical Distribution of Two Estuarine Plant Species from the Subtropical and Temperate Regions of South Africa. Wetlands 2019, 39, 1179–1188. [Google Scholar] [CrossRef]
- Zheng, J.; Wei, H.; Chen, R.; Liu, J.; Wang, L.; Gu, W. Invasive Trends of Spartina alterniflora in the Southeastern Coast of China and Potential Distributional Impacts on Mangrove Forests. Plants 2023, 12, 1923. [Google Scholar] [CrossRef]
- Anibaba, Q.A.; Dyderski, M.K.; Jagodzinski, A.M. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Sci. Total Environ. 2022, 825, 154053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, L.; Xie, D.; Jiang, J. Simulation and Prediction of Sea Level Rise Impact on the Distribution of Mangrove and Spartina alterniflora in Coastal China. Forests 2023, 14, 831. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papes, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahoor, B.; Liu, X.; Ahmad, B.; Kumar, L.; Songer, M. Impact of climate change on Asiatic black bear (Ursus thibetanus) and its autumn diet in the northern highlands of Pakistan. Glob. Chang. Biol. 2021, 27, 4294–4306. [Google Scholar] [CrossRef]
- Lin, J.; Li, H.; Zeng, Y.; He, X.; Zhuang, Y.; Liang, Y.; Lu, S. Estimating potential illegal land development in conservation areas based on a presence-only model. J. Environ. Manag. 2022, 321, 115994. [Google Scholar] [CrossRef]
- Kangas, P.C.; Lugo, A.E. The distribution of mangroves and saltmarsh in Florida. Trop. Ecol. 1990, 31, 32–39. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Banerjee, A.K.; Liang, X.; Harms, N.E.; Tan, F.; Lin, Y.; Feng, H.; Wang, J.; Li, Q.; Jia, Y.; Lu, X.; et al. Spatio-temporal pattern of cross-continental invasion: Evidence of climatic niche shift and predicted range expansion provide management insights for smooth cordgrass. Ecol. Indic. 2022, 140, 109052. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Y.; Liu, M.; Chang, Y.; Yan, X.; Bu, R.; Zhao, D.; Li, Z. Introduction and Spread of an Exotic Plant, Spartina alterniflora, Along Coastal Marshes of China. Wetlands 2017, 37, 1181–1193. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, X.; Liu, M.; Liu, X.; Tao, J. Species Distribution Models of the Spartina alterniflora Loisel in Its Origin and Invasive Country Reveal an Ecological Niche Shift. Front. Plant Sci. 2021, 12, 738769. [Google Scholar] [CrossRef]
- Xu, X.; Wei, S.; Chen, H.; Li, B.; Nie, M. Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China. J. Appl. Ecol. 2022, 59, 1937–1946. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Chen, X.; Maung-Douglass, K.; Strong, D.R.; Pennings, S.C. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. New Phytol. 2020, 226, 623–634. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Li, Z.; Li, M.; Jiang, M. Impacts of Spartina alterniflora invasion on soil carbon contents and stability in the Yellow River Delta, China. Sci. Total Environ. 2021, 775, 145188. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, J.; Wang, L.; Cui, X.; Ning, C.; Wu, H.; Zhu, X.; Lin, G. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere 2017, 184, 774–783. [Google Scholar] [CrossRef]
- Chen, L.; Tam, N.F.Y.; Wang, W.; Zhang, Y.; Lin, G. Significant niche overlap between native and exotic Sonneratia mangrove species along a continuum of varying inundation periods. Estuar. Coast. Shelf Sci. 2013, 117, 22–28. [Google Scholar] [CrossRef]
- Yang, S.-C.; Riddin, T.; Adams, J.B.; Shih, S.-S. Predicting the spatial distribution of mangroves in a South African estuary in response to sea level rise, substrate elevation change and a sea storm event. J. Coast. Conserv. 2014, 18, 459–469. [Google Scholar] [CrossRef]
- Jia, M. Remote Sensing analysis of China’s mangrove forests dynamics during 1973 to 2013. Chin. Acad. Sci. 2014. [Google Scholar]
- Song, S.; Ding, Y.; Li, W.; Meng, Y.; Zhou, J.; Gou, R.; Zhang, C.; Ye, S.; Saintilan, N.; Krauss, K.W.; et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 2023, 14, 756. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Li, Y.; Liu, W.; Li, Y. Spatially discontinuous relationships between salt marsh invasion and mangrove forest fragmentation. For. Ecol. Manag. 2021, 499, 119611. [Google Scholar] [CrossRef]
- Manea, A.; Geedicke, I.; Leishman, M.R. Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community. Oecologia 2020, 192, 273–280. [Google Scholar] [CrossRef]
No. | Data Type | Variable | Description | Units |
---|---|---|---|---|
1 | Bioclimatic | bio_01 | Annual mean temperature | °C |
2 | Bioclimatic | bio_02 | Mean diurnal range | °C |
3 | Bioclimatic | bio_03 | Isothermality (BIO2/BIO7) × 100) | unitless |
4 | Bioclimatic | bio_04 | Temperature seasonality | unitless |
5 | Bioclimatic | bio_05 | Max temperature of the warmest month | °C |
6 | Bioclimatic | bio_06 | Min temperature of the coldest month | °C |
7 | Bioclimatic | bio_07 | Annual temperature range | °C |
8 | Bioclimatic | bio_08 | Mean temperature of the wettest quarter | °C |
9 | Bioclimatic | bio_09 | Mean temperature of the driest quarter | °C |
10 | Bioclimatic | bio_10 | Mean temperature of the warmest quarter | °C |
11 | Bioclimatic | bio_11 | Mean temperature of the coldest quarter | °C |
12 | Bioclimatic | bio_12 | Annual precipitation | mm |
13 | Bioclimatic | bio_13 | Precipitation of the wettest month | mm |
14 | Bioclimatic | bio_14 | Precipitation of the driest month | mm |
15 | Bioclimatic | bio_15 | Precipitation seasonality | unitless |
16 | Bioclimatic | bio_16 | Precipitation of the wettest quarter | mm |
17 | Bioclimatic | bio_17 | Precipitation of the driest quarter | mm |
18 | Bioclimatic | bio_18 | Precipitation of the warmest quarter | mm |
19 | Bioclimatic | bio_19 | Precipitation of the coldest quarter | mm |
20 | Topographic | elevation | Elevation | m |
21 | Topographic | slope | Slope | |
22 | Topographic | distance | Distance to coastline | |
23 | sediments | TOC | Total organic carbon | |
24 | sediments | SAND | ||
25 | sediments | SILT | ||
26 | sediments | CLAT | ||
27 | sediments | pH | ||
28 | sediments | REBULK | ||
29 | sediments | ECE | ||
30 | SST | sst_01 | Annual mean sea surface temperature | °C |
31 | SST | sst_02 | Mean diurnal range of SST | °C |
32 | SST | sst_03 | Isothermality of SST | unitless |
33 | SST | sst_04 | Sea surface temperature seasonality | unitless |
34 | SST | sst_05 | Max sea surface temperature of the warmest month | °C |
35 | SST | sst_06 | Min sea surface temperature of the coldest month | °C |
36 | SST | sst_07 | Annual sea surface temperature range | °C |
37 | SST | sst_08 | Mean sea surface temperature of the wettest quarter | °C |
38 | SST | sst_09 | Mean sea surface temperature of the driest quarter | °C |
39 | SST | sst_10 | Mean sea surface temperature of the warmest quarter | °C |
40 | SST | sst_11 | Mean sea surface temperature of the coldest quarter | °C |
Parameters | Mangrove | S. alterniflora |
---|---|---|
Elevation | 20.6 | 13.4 |
Distance to coastline | 18.81 | 39.6 |
Mean sea surface temperature of the wettest quarter (sst_08) | 4.7 | 17.9 |
ECE | 3.9 | 1.2 |
Annual mean sea surface temperature (sst_01) | 3.5 | 1.2 |
Mean sea surface temperature of the warmest quarter (sst_10) | 1.8 | 1.4 |
Mean temperature of the wettest quarter (bio_08) | 1.4 | 4.9 |
Temperature seasonality (bio_04) | 1.6 | 2.2 |
Annual sea surface temperature range (sst_07) | 31.1 | ---- |
Mean temperature of the warmest quarter (bio10) | 2 | ---- |
Slope | 1.5 | ---- |
Mean sea surface temperature of the coldest quarter (sst_11) | ---- | 3.6 |
Max sea surface temperature of the warmest month (sst_05) | ---- | 3.1 |
Mean diurnal range (bio_02) | ---- | 1.7 |
Others | 9.01 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Berger, U.; Cao, M.; Zhang, Y.; He, J.; Pan, L.; Jiang, J. Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China. Forests 2023, 14, 1220. https://doi.org/10.3390/f14061220
Cui L, Berger U, Cao M, Zhang Y, He J, Pan L, Jiang J. Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China. Forests. 2023; 14(6):1220. https://doi.org/10.3390/f14061220
Chicago/Turabian StyleCui, Lina, Uta Berger, Minmin Cao, Yaqi Zhang, Junming He, Lianghao Pan, and Jiang Jiang. 2023. "Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China" Forests 14, no. 6: 1220. https://doi.org/10.3390/f14061220
APA StyleCui, L., Berger, U., Cao, M., Zhang, Y., He, J., Pan, L., & Jiang, J. (2023). Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China. Forests, 14(6), 1220. https://doi.org/10.3390/f14061220