Forest Road Subgrade Improvement by Lime and Sodium Nanoalginate Used as Stabilizers for Clay Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the Soil Used
2.2. Description of the Tested Stabilizers
2.3. Method
3. Results
3.1. The Effect of Stabilizers on the Atterberg Limits
3.2. The Effect of Stabilizers on the Parameters of the Standard Proctor Compaction Test
3.3. The Effect of Stabilizers on the Parameters of the CBR Test
3.4. The Effect of Stabilizers on the Parameters of the UCS Test
3.5. The Effect of Curing Time on Atterberg Limits
3.6. The Effect of Curing Time on the Parameters of Standard Proctor Test
3.7. The Effect of Curing Time on the Parameters of the UCS Test
3.8. The Effect of Curing Time on the Parameters of the CBR Tests
4. Discussion
5. Conclusions
- Adding sodium nanoalginate and lime to the soil decreased the liquid limit, increased the plastic limit and, finally, reduced the plasticity index. It should be noted that sodium nanoalginate showed better results compared to lime.
- Adding sodium nanoalginate to the soil increases the maximum dry unit weight and decreases the optimal moisture content, and as the percentage of the stabilizer increases, the dry unit weight of the soil increases and the optimal moisture content decreases more intensively. On the other hand, adding lime to the soil decreased the maximum dry unit weight and increased the optimal moisture content, but increasing the lime content to more than 5% provided no additional benefits.
- Adding different doses of sodium nanoalginate and lime increased the UCS of the soil, but using sodium nanoalginate provided better outcomes compared to lime. It is noteworthy that with increasing the dose of sodium nanoalginate, the UCS increased more intensively, as opposed to adding lime.
- Adding sodium nanoalginate and lime to the soil increased the soil’s CBR, but sodium nanoalginate performed better. The highest CBR was observed in the sample treated with 7% sodium nanoalginate and 5% lime, and increasing the dose of lime at 7% decreased the soil’s CBR.
- Increasing the curing time improved the mechanical properties of the soil in the samples treated with both stabilizers, but the results indicated better results with increasing the curing time in the samples treated with sodium nanoalginate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Thompson, M.P.; Gannon, B.M.; Caggiano, M.D. Forest roads and operational wildfire response planning. Forests 2021, 12, 110. [Google Scholar] [CrossRef]
- Mousavi, F.; Abdi, E.; Fatehi, P.; Ghalandarzadeh, A.; Bahrami, H.A.; Majnounian, B.; Ziadi, N. Rapid determination of soil unconfined compressive strength using reflectance spectroscopy. Bull. Eng. Geol. Environ. 2021, 80, 3923–3938. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Durgam, H.R.; Ramani, P.V.; Gupta, A. Drivers of sustainable site management for green construction: An Indian construction perspective. Asian J. Civ. Eng. 2022, 23, 515–530. [Google Scholar] [CrossRef]
- Pereira, R.S.; Emmert, F.; Miguel, E.P.; Gatto, A. Soil stabilization with lime for the construction of forest roads. Floresta Ambiente 2018, 25, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ok, Y.S.; Tsang, D.C.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef] [Green Version]
- Papa, I.; Picchio, R.; Lovrinčević, M.; Janeš, D.; Pentek, T.; Validžić, D.; Venanzi, R.; Đuka, A. Factors Affecting Earthwork Volume in Forest Road Construction on Steep Terrain. Land 2023, 12, 400. [Google Scholar] [CrossRef]
- Mousavi, F.; Avatefi Hemmat, M.; Abdi, E.; Norouzi, A. The effect of polymer materials on the stabilization of forest road subgrade. Int. J. For. Eng. 2021, 32, 235–245. [Google Scholar] [CrossRef]
- Zevgolis, I.E.; Theocharis, A.I.; Deliveris, A.V.; Koukouzas, N.C.; Roumpos, C.; Marshall, A.M. Geotechnical characterization of fine-grained spoil material from surface coal mines. J. Geotech. Geoenviron. Eng. 2021, 147, 04021050. [Google Scholar] [CrossRef]
- Shirmohammadi, S.; Ghaffarpour Jahromi, S.; Payan, M.; Senetakis, K. Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing—Thawing cycles. Coatings 2021, 11, 994. [Google Scholar] [CrossRef]
- Copeland, S.M.; Baughman, O.W.; Boyd, C.S.; Davies, K.W.; Kerby, J.; Kildisheva, O.A.; Svejcar, T. Improving restoration success through a precision restoration framework. Restor. Ecol. 2021, 29, e13348. [Google Scholar] [CrossRef]
- Andavan, S.; Kumar, B.M. Case study on soil stabilization by using bitumen emulsions—A review. Mater. Today Proc. 2020, 22, 1200–1202. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L.; Karrech, A. Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization. Can. Geotech. J. 2020, 57, 1356–1368. [Google Scholar] [CrossRef]
- Nikonovas, T.; Spessa, A.; Doerr, S.H.; Clay, G.D.; Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 2020, 1, 65. [Google Scholar] [CrossRef]
- Mousavi, F.; Abdi, E. Unconfined Compression Strength of Polymer Stabilized Forest Soil Clay. Geotech. Geol. Eng. 2022, 40, 4095–4107. [Google Scholar] [CrossRef]
- Rangan, P.R.; Tumpu, M. Effect calcium hydroxide (traditionally called slaked lime) to stabilization of laterite soil. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 12–14 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 1088, p. 012105. [Google Scholar]
- Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; Soltani, A.; Khayat, N. Stabilization of soft clay using short fibers and poly vinyl alcohol. Geotext. Geomembr. 2018, 46, 646–655. [Google Scholar] [CrossRef]
- Niyomukiza, J.B.; Wardani, S.P.R.; Setiadji, B.H. The effect of curing time on the engineering properties of sawdust and lime stabilized expansive soils. In Proceedings of the 2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019), Kendari, Indonesia, 1–3 November 2019; Atlantis Press: Amsterdam, The Netherlands, 2020; pp. 157–161. [Google Scholar]
- Jahandari, S.; Li, J.; Saberian, M.; Shahsavarigoughari, M. Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ 2017, 13, 49–58. [Google Scholar] [CrossRef]
- Bredenoord, J.; Kulshreshtha, Y. Compressed Stabilized Earthen Blocks and Their Use in Low-Cost Social Housing. Sustainability 2023, 15, 5295. [Google Scholar] [CrossRef]
- Emmert, F.; Pereira, R.S.; Miguel, E.P.; Mota, F.C.M.; Angelo, H.; do Vale, A.T.; Machado, M.P.O.; Nappo, M.E.; Martins, I.S. Improving geotechnical properties of a sand-clay soil by cement stabilization for base course in forest roads. Afr. J. Agric. Res. 2017, 12, 2475–2481. [Google Scholar]
- Lindroos, A.-J.; Ryhti, K.; Kaakkurivaara, T.; Uusitalo, J.; Helmisaari, H.-S. Leaching of heavy metals and barium from forest roads reinforced with fly ash. Silva Fenn. 2019, 53, 10088. [Google Scholar] [CrossRef]
- Li, G.-Y.; Hou, X.; Mu, Y.-H.; Ma, W.; Wang, F.; Zhou, Y.; Mao, Y.-C. Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate. Arab. J. Geosci. 2019, 12, 700. [Google Scholar] [CrossRef]
- Fadmoro, O.F.; Kar, S.S.; Tiwari, D.; Singh, A. Environmental and economic impact of mixed cow dung and husk ashes in subgrade soil stabilization. Int. J. Pavement Res. Technol. 2022, 15, 835–846. [Google Scholar] [CrossRef]
- Nasiri, M.; Lotfalian, M.; Modarres, A.; Wu, W. Optimum utilization of rice husk ash for stabilization of sub-base materials in construction and repair project of forest roads. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2016, 37, 333–343. [Google Scholar]
- Mousavi, F.; Abdi, E.; Rahimi, H. Effect of polymer stabilizer on swelling potential and CBR of forest road material. KSCE J. Civ. Eng. 2014, 18, 2064–2071. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Q.; Wang, Y.; Bai, Y.; Wei, J.; Song, Z. The effect of polymer-fiber stabilization on the unconfined compressive strength and shear strength of sand. Adv. Mater. Sci. Eng. 2017, 2017, 2370763. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.R.; Parsakhoo, A.; Nasiri, M.; Habashi, H. Effect of the Curing Time and Combination of Corncob (Zea mays L.) Ash With Swelling Clay on Mechanical Properties of Soil in Forest Road. J. Sustain. For. 2021, 40, 346–356. [Google Scholar] [CrossRef]
- Mansouri, S.; Nasiri, M.; Modarres, A. Technical and environmental impacts of coal waste used as a soil stabilizer in construction projects of forest roads. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 491–500. [Google Scholar] [CrossRef]
- Lotfalian, M.; Parsakhoo, A.; Savadkoohi, A. Improvement of forest road gravel surfacing quality by Nano-polymer CBR PLUS. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2016, 37, 345–352. [Google Scholar]
- Gough, C.R.; Rivera-Galletti, A.; Cowan, D.A.; La Cruz, D.S.-D.; Hu, X. Protein and polysaccharide-based fiber materials generated from ionic liquids: A review. Molecules 2020, 25, 3362. [Google Scholar] [CrossRef]
- Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.; Virchea, L.-I.; Rexhepi, D.; Mathe, E.; Georgescu, C. Green design of novel starch-based packaging materials sustaining human and environmental health. Polymers 2021, 13, 1190. [Google Scholar] [CrossRef]
- Saqib, M.N.; Ahammed, S.; Liu, F.; Zhong, F. Customization of liquid-core sodium alginate beads by molecular engineering. Carbohydr. Polym. 2022, 284, 119047. [Google Scholar] [CrossRef]
- Bakhshizadeh, A.; Khayat, N.; Horpibulsuk, S. Surface stabilization of clay using sodium alginate. Case Stud. Constr. Mater. 2022, 16, e01006. [Google Scholar] [CrossRef]
- Batool, J.A.; Rehman, K.; Qader, A.; Akash, M.S. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation. Curr. Pharm. Des. 2022, 28, 1669–1687. [Google Scholar] [CrossRef] [PubMed]
- Arab, M.G.; Mousa, R.; Gabr, A.; Azam, A.; El-Badawy, S.; Hassan, A. Resilient behavior of sodium alginate–treated cohesive soils for pavement applications. J. Mater. Civ. Eng. 2019, 31, 04018361. [Google Scholar] [CrossRef]
- Vons, B.; Melnyk, Y.; Skorokhoda, V.; Grochovuy, T.; Chubka, M. Research of the rheological properties of the gel based on sodium alginate for the local treatment of burns. In Proceedings of the 2nd International Scientific Conference Chemical Technology and Engineering, Lviv, Ukraine, 24–28 June 2019; pp. 24–28. [Google Scholar]
- Hayati, E.; Majnounian, B.; Abdi, E.; Sessions, J.; Makhdoum, M. An expert-based approach to forest road network planning by combining Delphi and spatial multi-criteria evaluation. Environ. Monit. Assess. 2013, 185, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Keybondori, S.; Abdi, E. Lime stabilization to improve clay-textured forest soil road subgrades. Int. J. For. Eng. 2021, 32, 112–118. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Particle-Size Analysis of Soils; ASTM: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Choukaife, H.; Doolaanea, A.A.; Alfatama, M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals 2020, 13, 335. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.V.; Sreedhar, V.; Mutalik, S.; Setty, C.M.; Sa, B. Interpenetrating network hydrogel membranes of sodium alginate and poly (vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int. J. Biol. Macromol. 2010, 47, 520–527. [Google Scholar] [CrossRef]
- British Standards Institution. British Standard Methods of Test for Soils for Civil Engineering Purposes: Part 5: Compressibility, Permeability and Durability Tests; British Standards Institution: London, UK, 1990. [Google Scholar]
- EN ISO 17892-12:2018; Geotechnical Investigation and Testing-Laboratory Testing of Soil—Part 12: Determination of Liquid and Plastic Limits. ISO: Geneva, Switzerland, 2018.
- ISO/TS 17892-2:2004; Geotechnical Investigation and Testing-Laboratory Testing of Soil—Part 2: Determination of Density of Fine Grained Soil. European Committee for Standardization: Brussels, Belgium; International Organization for Standardization: Geneva, Switzerland, 2004.
- EN ISO 12236:2006; Geosynthetics—Static Puncture Test (CBR Test). European Committee for Standardization: Brussels, Belgium, 2006.
- BS EN ISO 17892-7:2017; Geotechnical Investigation and Testing-Laboratory Testing of Soil—Part 7: Unconfined Compression Test. BSI Standard Limited: London, UK, 2018.
- Naeini, S.A.; Naderinia, B.; Izadi, E. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE J. Civ. Eng. 2012, 16, 943–949. [Google Scholar] [CrossRef]
- Soltani, A.; Taheri, A.; Khatibi, M.; Estabragh, A. Swelling potential of a stabilized expansive soil: A comparative experimental study. Geotech. Geol. Eng. 2017, 35, 1717–1744. [Google Scholar] [CrossRef]
- Rhee, H.; Fridley, J.; Chung, W.; Page-Dumroese, D. An approach for modeling and quantifying traffic-induced processes and changes in forest road aggregate particle-size distributions. Forests 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Shirsavkar, S.; Koranne, S. Innovation in road construction using natural polymer. Electron. J. Geotech. Eng. 2010, 15, 1614–1624. [Google Scholar]
- Sherwood, P. Soil Stabilization with Cement and Lime; H.M. Stationery Office: Richmond, UK, 1993. [Google Scholar]
- Kampala, A.; Horpibulsuk, S. Engineering properties of silty clay stabilized with calcium carbide residue. J. Mater. Civ. Eng. 2013, 25, 632–644. [Google Scholar] [CrossRef]
- Zhou, Z.; Sofi, M.; Lumantarna, E.; San Nicolas, R.; Hadi Kusuma, G.; Mendis, P. Strength development and thermogravimetric investigation of high-volume fly ash binders. Materials 2019, 12, 3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Fatehi, H.; Bahmani, M.; Noorzad, A. Strengthening of dune sand with sodium alginate biopolymer. In Geo-Congress 2019: Soil Improvement; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 157–166. [Google Scholar]
- Awad, Y.M.; Blagodatskaya, E.; Ok, Y.S.; Kuzyakov, Y. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. Eur. J. Soil Sci. 2013, 64, 488–499. [Google Scholar] [CrossRef]
- Hu, W.-J.; Shang, Q.-S.; Liu, S.-T.; Zhao, Z.-Z.; Fan, Z.-J.; Gao, X.-C.; Chang, Y.; Zhong, Y.; Ou, Q.-C. The application technology of RoadPacker solidified limestone soil. In Proceedings of the International Conference on Transportation Engineering 2007, Chengdu, China, 22–24 July 2007; pp. 692–697. [Google Scholar]
- Bischetti, G.B.; De Cesare, G.; Mickovski, S.B.; Rauch, H.P.; Schwarz, M.; Stangl, R. Design and temporal issues in Soil Bioengineering structures for the stabilisation of shallow soil movements. Ecol. Eng. 2021, 169, 106309. [Google Scholar] [CrossRef]
- Scholen, D.E. Stabilizer mechanisms in nonstandard stabilizers. In Proceedings of the Transportation Research Board Conference, Irvine, CA, USA, 12–15 March 1995. [Google Scholar]
- El Sawwaf, M.A.; Shahien, M.M.; Nasr, A.M.; Habib, M.S. Improvement of Collapsible Soil Characteristics Using Environmentally Friendly Materials. Indian Geotech. J. 2023, 1–11. [Google Scholar] [CrossRef]
- Amadi, A.; Okeiyi, A. Use of quick and hydrated lime in stabilization of lateritic soil: Comparative analysis of laboratory data. Int. J. Geo-Eng. 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Negi, A.S.; Faizan, M.; Siddharth, D.P.; Singh, R. Soil stabilization using lime. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 448–453. [Google Scholar]
- Yin, Z.; Lekalpure, R.L.; Ndiema, K.M. Experimental study of black cotton soil stabilization with natural lime and pozzolans in pavement subgrade construction. Coatings 2022, 12, 103. [Google Scholar] [CrossRef]
- Niyomukiza, J.; Bitekateko, A.; Nsemerirwe, J.; Kawiso, B.; Kiwanuka, M. Investigating the effect of PET plastic bottle strips on the strength and compressibility properties of clayey soil. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; IOP Publishing: Bristol, UK, 2021; Volume 894, p. 012021. [Google Scholar]
- Al-Swaidani, A.; Hammoud, I.; Meziab, A. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 2016, 8, 714–725. [Google Scholar] [CrossRef] [Green Version]
- Kapeluszna, E.; Kotwica, Ł.; Nocuń-Wczelik, W. Comparison of the effect of ground waste expanded perlite and silica fume on the hydration of cements with various tricalcium aluminate content—Comprehensive analysis. Constr. Build. Mater. 2021, 303, 124434. [Google Scholar] [CrossRef]
- Shalabi, F.I.; Mazher, J.; Khan, K.; Amin, M.N.; Albaqshi, A.; Alamer, A.; Barsheed, A.; Alshuaibi, O. Influence of lime and volcanic ash on the properties of dune sand as sustainable construction materials. Materials 2021, 14, 645. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P. Lime stabilization of soil: A physico-chemical and micro-mechanistic perspective. Indian Geotech. J. 2020, 50, 339–347. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Jahandari, S.; Mojtahedi, S.F.; Zivari, F.; Jafari, M.; Mahmoudi, M.R.; Shokrgozar, A.; Kharazmi, S.; Vosough Hosseini, B.; Rezvani, S.; Jalalifar, H. The impact of long-term curing period on the mechanical features of lime-geogrid treated soils. Geomech. Geoeng. 2022, 17, 269–281. [Google Scholar] [CrossRef]
Property | Amount |
---|---|
Gs | 2.85 |
SO4 (2−) | 1.9 |
CaCO3 (%) | 0.74 |
CEC | 39.09 |
EC | 121.2 |
OC | 1.68 |
Ph | 4.8 |
Na+ (meq/L) | 0.39 |
Ca2+ (meq/L) | 1.7 |
Mg2+ (meq/L) | 2.8 |
Cl− (meq/L) | 0.8 |
(meq/L) | 0.0 |
HCO3 (2−) | 1.88 |
K+ (meq/L) | 0.9 |
Stabilizer | Property | Value |
---|---|---|
Sodium nanoalginate | Chemical formula | (C6H7O6Na)n |
Ph | 5.5–7.5 for a 1% aqueous solution (at 25 °C) | |
Matter insoluble in water | 1% | |
As | <3 PPM | |
Pb | <10 PPM | |
Sulphated ash | 22.6 | |
S | <0.02% | |
P | <0.02% | |
Molecular weight | 216 g/mol | |
Dynamic viscosity | 12 CPS | |
Lime | Chemical formula | CaO |
Ph | 12.8 | |
Matter insoluble in water | Chemical reaction and converts to calcium hydroxide | |
Gs | 3.34 g/cm | |
Melting point | 2613 °C | |
Appearance | White powder |
Treatment | Dose (%) | LL (%) | PL (%) | PI (%) |
---|---|---|---|---|
Control | 0 | 64.53 | 30.80 | 33.73 |
Sodium nanoalginate | 3 | 56.17 | 33.43 | 22.74 |
5 | 48.22 | 34.15 | 14.07 | |
7 | 45.34 | 35.66 | 9.68 | |
Lime | 3 | 58.25 | 32.89 | 25.36 |
5 | 50.58 | 33.27 | 17.31 | |
7 | 49.15 | 33.31 | 15.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, F.; Abdi, E.; Borz, S.A. Forest Road Subgrade Improvement by Lime and Sodium Nanoalginate Used as Stabilizers for Clay Soils. Forests 2023, 14, 1332. https://doi.org/10.3390/f14071332
Mousavi F, Abdi E, Borz SA. Forest Road Subgrade Improvement by Lime and Sodium Nanoalginate Used as Stabilizers for Clay Soils. Forests. 2023; 14(7):1332. https://doi.org/10.3390/f14071332
Chicago/Turabian StyleMousavi, Fatemeh, Ehsan Abdi, and Stelian Alexandru Borz. 2023. "Forest Road Subgrade Improvement by Lime and Sodium Nanoalginate Used as Stabilizers for Clay Soils" Forests 14, no. 7: 1332. https://doi.org/10.3390/f14071332
APA StyleMousavi, F., Abdi, E., & Borz, S. A. (2023). Forest Road Subgrade Improvement by Lime and Sodium Nanoalginate Used as Stabilizers for Clay Soils. Forests, 14(7), 1332. https://doi.org/10.3390/f14071332