A Review of the Sediment Production and Transport Processes of Forest Road Erosion
Abstract
:1. Introduction
2. Mechanisms of Sediment Production from Forest Road Erosion
2.1. Road Erosion Units
2.2. Factors Affecting Sediment Production of Forest Road Erosion
2.3. Assessing Sediment Production of Forest Road Erosion
3. The Transport Mechanisms of Forest Road-Eroded Sediment
3.1. Transport Process of Eroded Sediment on Forest Road Surfaces
3.2. Transport Process of Eroded Sediments on Forest Road–Stream Slopes
3.2.1. Sediment Transport Mechanisms
3.2.2. Sediment Connectivity between Roads and Streams
3.3. Transport Process of Forest Road-Eroded Sediment in Streams and Its Ecological Effects
4. Regulation of Forest Road Erosion and Sediment Transport
5. Prospectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sosa-Pérez, G.; MacDonald, L.H. Reductions in road sediment production and road-stream connectivity from two decommissioning treatments. For. Ecol. Manag. 2017, 398, 116–129. [Google Scholar] [CrossRef]
- Ramos-Scharron, C.E.; Macdonald, L.H. Runoff and suspended sediment yields from an unpaved road segment, St John, US Virgin Islands. Hydrol. Process. 2007, 21, 35–50. [Google Scholar] [CrossRef]
- Wang, C.M.; Liu, B.Y.; Yang, Q.K.; Pang, G.W.; Long, Y.Q.; Wang, L.; Cruse, R.M.; Dang, W.Q.; Liu, X.; Wang, E.H. Unpaved road erosion after heavy storms in mountain areas of northern China. Int. Soil Water Conserv. Res. 2022, 10, 29–37. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, K.; Dai, H.; Liang, Y. Modeling interrill erosion on unpaved roads in the loess plateau of China. Land Degrad. Dev. 2015, 26, 825–832. [Google Scholar] [CrossRef]
- Rijsdijk, A.; Bruijnzeel, L.; Sutoto, C.K. Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia. Geomorphology 2007, 87, 28–37. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E. Land disturbance effects of roads in runoff and sediment production on dry-tropical settings. Geoderma 2018, 310, 107–119. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D. The dilemma of mountain roads. Nat. Geosci. 2012, 5, 437–438. [Google Scholar] [CrossRef]
- Eisenbies, M.H.; Aust, W.M.; Burger, J.A.; Adams, M.B. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—A review. For. Ecol. Manag. 2007, 242, 77–98. [Google Scholar] [CrossRef]
- Labrière, N.; Locatelli, B.; Laumonier, Y.; Freycon, V.; Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 2015, 203, 127–139. [Google Scholar] [CrossRef]
- Farias, T.R.L.; Medeiros, P.H.A.; Araújo, J.C.D.; Navarro-Hevia, J. The role of unpaved roads in the sediment budget of a semiarid mesoscale catchment. Land Degrad. Dev. 2021, 32, 5443–5454. [Google Scholar] [CrossRef]
- Bartley, R.; Bainbridge, Z.T.; Lewis, S.E.; Kroon, F.J.; Wilkinson, S.N.; Brodie, J.E.; Silburn, D.M. Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Sci. Total Environ. 2014, 468–469, 1138–1153. [Google Scholar] [CrossRef] [PubMed]
- Vanacker, V.; von Blanckenburg, F.; Govers, G.; Molina, A.; Poesen, J.; Deckers, J.; Kubik, P. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology 2007, 35, 303–306. [Google Scholar] [CrossRef]
- Vrieling, A. Satellite remote sensing for water erosion assessment: A review. Catena 2006, 65, 2–18. [Google Scholar] [CrossRef]
- Yousefi, S.; Moradi, H.; Boll, J.; Schönbrodt-Stitt, S. Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests. Geoderma 2016, 284, 103–112. [Google Scholar] [CrossRef]
- Fu, B.; Newham, L.T.; Ramos-Scharron, C. A review of surface erosion and sediment delivery models for unsealed roads. Environ. Model. Softw. 2010, 25, 1–14. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, Q.; Yu, Z.; Yu, J.; Liu, Y.; Wang, P.; Zhang, G.; Zhou, J.; Ding, S. Factors and thresholds determining sediment delivery pathways between forest road and stream in mountainous watershed. Catena 2023, 224, 106976. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, A.; Jing, Y.; Zhang, G.; Yu, Z.; Yu, J.; Liu, Y.; Ding, S. Optimizing management practices to reduce sediment connectivity between forest roads and streams in a mountainous watershed. Remote Sens. 2022, 14, 4897. [Google Scholar] [CrossRef]
- Scharrón, C.E.R.; Alicea, E.E.; Sánchez, Y.F.; LaFevor, M.C.; McLaughlin, P.; MacDonald, L.H.; Reale-Munroe, K.; Thomaz, E.L.; Ríos, R.V. Three decades of road and trail runoff and erosion work in the northeastern Caribbean—A research program perspective. J. ASABE 2023, 66, 35–45. [Google Scholar] [CrossRef]
- Macdonald, L.H.; Sampson, R.W.; Anderson, D.M. Runoff and road erosion at the plot and road segment scales, St John, US Virgin Islands. Earth Surf. Process. Landf. 2001, 26, 251–272. [Google Scholar] [CrossRef]
- Seutloali, K.E.; Reinhard Beckedahl, H. A review of road-related soil erosion: An assessment of causes, evaluation techniques and available control measures. Earth Sci. Res. J. 2015, 19, 73–80. [Google Scholar] [CrossRef]
- Croke, J.C.; Hairsine, P.B. Sediment delivery in managed forests: A review. Environ. Rev. 2006, 14, 59–87. [Google Scholar] [CrossRef]
- Mahoney, D.; Blandford, B.; Fox, J. Coupling the probability of connectivity and RUSLE reveals pathways of sediment transport and soil loss rates for forest and reclaimed mine landscapes. J. Hydrol. 2021, 594, 125963. [Google Scholar] [CrossRef]
- MacDonald, L.H.; Coe, D.B. Road sediment production and delivery: Processes and management. In Proceedings of the First World Landslide Forum, International Programme on Landslides and International Strategy for Disaster Reduction, Tokyo, Japan, 17–21 November 2008; United Nations University: Tokyo, Japan, 2008; pp. 381–384. [Google Scholar]
- Jing, Y.; Zhao, Q.; Lu, M.; Wang, A.; Yu, J.; Liu, Y.; Ding, S. Effects of road and river networks on sediment connectivity in mountainous watersheds. Sci. Total Environ. 2022, 826, 154189. [Google Scholar] [CrossRef] [PubMed]
- Orndorff, A.; Hochmuth, G.; Ogram, A. Evaluating the Effects of Sedimentation from Forest Roads: A Review; Soil and Water Science Department, University of Florida: Gainesville, FL, USA, 2017; Volume 38. [Google Scholar]
- Alvis, A.D.; Luce, C.H.; Istanbulluoglu, E. How does traffic affect erosion of unpaved forest roads? Environ. Rev. 2022, 13, 182–194. [Google Scholar] [CrossRef]
- Reid, L.M.; Dunne, T. Sediment production from forest road surfaces. Water Resour. Res. 1984, 20, 1753–1761. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E.; Lafevor, M.C. The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. J. Hydrol. 2016, 533, 168–179. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, A.; Yu, Z.; Yu, J.; Liu, Y.; Zhang, G.; Liu, G.; Wang, P.; Ding, S. Factors contributing to rill erosion of forest roads in a mountainous watershed. J. Environ. Manag. 2023, 326, 116829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Liu, B.; Wang, Z.; Zhang, S. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau. Agric. Ecosyst. Environ. 2019, 284, 106580. [Google Scholar] [CrossRef]
- Cerdà, A. Soil water erosion on road embankments in eastern Spain. Sci. Total Environ. 2007, 378, 151–155. [Google Scholar] [CrossRef]
- Arnaez, J.; Larrea, V.; Ortigosa, L. Surface runoff and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain. Catena 2004, 57, 1–14. [Google Scholar] [CrossRef]
- Chehlafi, A.; Kchikach, A.; Derradji, A.; Mequedade, N. Highway cutting slopes with high rainfall erosion in Morocco: Evaluation of soil losses and erosion control using concrete arches. Eng. Geol. 2019, 260, 105200. [Google Scholar] [CrossRef]
- Kastridis, A. Impact of forest roads on hydrological processes. Forests 2020, 11, 1201. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Y.; Liu, C. Study of unpaved road surface erosion based on terrestrial laser scanning. Catena 2021, 199, 105091. [Google Scholar] [CrossRef]
- Burak, A. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: A case study in Kastamonu Regional Forest Directorate (Turkey). Environ. Monit. Assess. 2015, 187, 1–10. [Google Scholar]
- Solgi, A.; Naghdi, R.; Zenner, E.K.; Hemmati, V.; Behjou, F.K.; Masumian, A. Evaluating the effectiveness of mulching for reducing soil erosion in cut slope and fill slope of forest roads in Hyrcanian forests. Croat. J. For. Eng. 2021, 42, 259–268. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret, M.; Deckers, J.; Haile, M.; Govers, G. Impact of road building on gully erosion risk: A case study from the northern Ethiopian highlands. Earth Surf. Process. Landf. 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Naghdi, R.; Dalir, P.; Gholami, V.; Pourghasemi, H.R. Modeling of sediment generation from forest roads employing SEDMODL and its calibration for Hyrcanian forests in northern Iran. Environ. Earth Sci. 2017, 76, 414. [Google Scholar] [CrossRef]
- Jordan, A.; Martínez-Zavala, L. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. For. Ecol. Manag. 2008, 255, 913–919. [Google Scholar] [CrossRef]
- Sisakht, S.R.; Majnounian, B.; Saravi, M.M.; Abdi, E.; Surfleet, C. Impact of rainfall intensity and cutslope material on sediment concentration from forest roads in northern Iran. iForest 2013, 7, 48–52. [Google Scholar] [CrossRef]
- Brown, K.R.; Aust, W.M.; Mcguire, K.J. Sediment delivery from bare and graveled forest road stream crossing approaches in the Virginia Piedmont. For. Ecol. Manag. 2013, 310, 836–846. [Google Scholar] [CrossRef]
- Sidle, R.C.; Sasaki, S.; Otsuki, M.; Noguchi, S.; Rahim Nik, A. Sediment pathways in a tropical forest: Effects of logging roads and skid trails. Hydrol. Process. 2004, 18, 703–720. [Google Scholar] [CrossRef]
- Bodoque, J.; Díez-Herrero, A.; Martín-Duque, J.; Rubiales, J.; Godfrey, A.; Pedraza, J.; Carrasco, R.; Sanz, M. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena 2005, 64, 81–102. [Google Scholar] [CrossRef]
- Sheridan, G.J.; Noske, P.J. A quantitative study of sediment delivery and stream pollution from different forest road types. Hydrol. Process. 2010, 21, 387–398. [Google Scholar] [CrossRef]
- Navarro-Hevia, J.; Farias, T.R.L.; Araújo, J.C.D. Soil erosion in steep road cut slopes in Palencia (Spain). Land Degrad. Dev. 2016, 27, 190–199. [Google Scholar] [CrossRef]
- De Oña, J.; Ferrer, A.; Osorio, F. Erosion and vegetation cover in road slopes hydroseeded with sewage sludge. Transport. Res. Part D Transport. Environ. 2011, 16, 465–468. [Google Scholar] [CrossRef]
- Jordánlópez, A.; Martínezzavala, L.; Bellinfante, N. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Sci. Total Environ. 2009, 407, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Arcos, E.; Castillo, A.; Cuevas-Aedo, A.; Ovando-Fuentealba, L.; Taylor, A.; Bustamante-Ortega, R.; Blake, W.H.; Bravo-Linares, C. Sediment source apportionment following wildfire in an upland commercial forest catchment. J. Soils Sediments 2021, 21, 2432–2449. [Google Scholar] [CrossRef]
- Van Meerveld, H.J.; Baird, E.J.; Floyd, W.C. Controls on sediment production from an unpaved resource road in a Pacific maritime watershed. Water Resour. Res. 2014, 50, 4803–4820. [Google Scholar] [CrossRef]
- Sosa-Pérez, G.; MacDonald, L. Wildfire effects on road surface erosion, deposition, and road-stream connectivity. Earth Surf. Process. Landf. 2016, 42, 735–748. [Google Scholar] [CrossRef]
- Olsen, W.H.; Wagenbrenner, J.W.; Robichaud, P.R. Factors affecting connectivity and sediment yields following wildfire and post-fire salvage logging in California’s Sierra Nevada. Hydrol. Process. 2021, 35, e13984. [Google Scholar] [CrossRef]
- Lin, H.Y.; Robinson, K.F.; Walter, L. Trade-offs among road-stream crossing upgrade prioritizations based on connectivity restoration and erosion risk control. River Res. Appl. 2020, 36, 371–382. [Google Scholar] [CrossRef]
- Liu, Y.J.; Hu, J.M.; Wang, T.W.; Cai, C.F.; Li, Z.X.; Zhang, Y. Effects of vegetation cover and road-concentrated flow on hillslope erosion in rainfall and scouring simulation tests in the Three Gorges Reservoir Area, China. Catena 2016, 136, 108–117. [Google Scholar] [CrossRef]
- Nasiri, M.; Hosseini, S.A. Effect of LS factor on soil loss rate from cut slopes after the construction of forest roads. J. Environ. Sci. Manag. 2012, 15, 13–18. [Google Scholar]
- Seutloali, K.E.; Beckedahl, H.R. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth 2015, 6, 633–641. [Google Scholar] [CrossRef]
- Efta, J.A.; Chung, W. Planning best management practices to reduce sediment delivery from forest roads using WEPP: Road erosion modeling and simulated annealing optimization. Croat. J. For. Eng. 2014, 35, 167–178. [Google Scholar]
- Doten, C.O.; Bowling, L.C.; Lanini, J.S.; Maurer, E.P.; Lettenmaier, D.P. A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds. Water Resour. Res. 2006, 42, 15. [Google Scholar] [CrossRef]
- Aruga, K.; Sessions, J.; Miyata, E.S. Forest road design with soil sediment evaluation using a high-resolution DEM. J. For. Res. 2005, 10, 471–479. [Google Scholar] [CrossRef]
- Fu, B.; Newham, L.T.H.; Field, J.B. Modelling erosion and sediment delivery from unsealed roads in southeast Australia. Math. Comput. Simul. 2009, 79, 2679–2688. [Google Scholar] [CrossRef]
- Ramos-Scharrón, C.E. Impacts of off-road vehicle tracks on runoff, erosion and sediment delivery—A combined field and modeling approach. Environ. Model. Softw. 2021, 136, 104957. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, L.; Fang, Q.; Hou, R. Contributions of runoff from paved farm roads to soil erosion in karst uplands under simulated rainfall conditions. Catena 2021, 196, 104887. [Google Scholar] [CrossRef]
- Akay, A.E.; Erdas, O.; Reis, M.; Yuksel, A. Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Build. Environ. 2008, 43, 687–695. [Google Scholar] [CrossRef]
- Benda, L.; James, C.; Miller, D.; Andras, K. Road erosion and delivery index (readi): A model for evaluating unpaved road erosion and stream sediment delivery. J. Am. Water Resour. Assoc. 2019, 55, 459–484. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W.; Sutherland, R.A. Erosion prediction on unpaved mountain roads in northern Thailand: Validation of dynamic erodibility modelling using KINEROS2. Hydrol. Process. 2001, 15, 337–358. [Google Scholar] [CrossRef]
- Surfleet, C.G.; Marks, S.J. Hydrologic and suspended sediment effects of forest roads using field and DHSVM modelling studies. For. Ecol. Manag. 2021, 499, 119632. [Google Scholar] [CrossRef]
- Cao, L.X.; Elliot, W.; Long, J.W. Spatial simulation of forest road effects on hydrology and soil erosion after a wildfire. Hydrol. Process. 2021, 35, 26. [Google Scholar] [CrossRef]
- Buján, S.; Guerra-Hernández, J.; González-Ferreiro, E.; Miranda, D. Forest road detection using lidar data and hybrid classification. Remote Sens. 2021, 13, 393. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Yuan, M.; Yang, M.; Deng, J. Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau. Earth Surf. Process. Landf. 2021, 46, 1713–1724. [Google Scholar] [CrossRef]
- Nosrati, K.; Collins, A.L. Investigating the importance of recreational roads as a sediment source in a mountainous catchment using a fingerprinting procedure with different multivariate statistical techniques and a Bayesian un-mixing model. J. Hydrol. 2019, 569, 506–518. [Google Scholar] [CrossRef]
- Estrany, J.; Ruiz, M.; Calsamiglia, A.; Carriquí, M.; García-Comendador, J.; Nadal, M.; Fortesa, J.; López-Tarazón, J.A.; Medrano, H.; Gago, J. Sediment connectivity linked to vegetation using UAVs: High-resolution imagery for ecosystem management. Sci. Total Environ. 2019, 671, 1192–1205. [Google Scholar] [CrossRef]
- Jacky Crokea, S.M.; Peter, F.; Ingrid, T. Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology 2005, 68, 257–268. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Heckmann, T.; Vericat, D. Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surf. Process. Landf. 2018, 43, 1547–1554. [Google Scholar] [CrossRef]
- Church, M. Interpreting sediment yield scaling. Earth Surf. Process. Landf. 2017, 42, 1895–1898. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W.; Sutherland, R.A. Improved method for modelling sediment transport on unpaved roads using KINEROS2 and dynamic erodibility. Hydrol. Process. 2002, 16, 3079–3089. [Google Scholar] [CrossRef]
- Hagos, A.; Grum, B.; Gebru, F.; Yemane, S.; Berhane, S.; Berhe, M.; Tekleyohannes, S.; Abera, T.; Aregawi, A.; Abebe, B.A. Runoff response and sediment yield from urban road surfaces: An experimental study in semi-arid northern Ethiopia. Hydrol. Sci. J. 2023, 68, 719–730. [Google Scholar] [CrossRef]
- Thompson, C.; Hicks, A.; Sun, X. A GIS tool for the design and assessment of road drain spacing to minimize stream pollution: RoadCAT. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 1923–1929. [Google Scholar]
- Coe, D.B.R. Sediment Production and Delivery from Forest Roads in the Sierra Nevada, California; Colorado State University: Fort Collins, CO, USA, 2006; p. 111. [Google Scholar]
- Webb, A.A.; Hanson, I.L.; Sun, G.; Segura, C. Road to stream connectivity: Implications for forest water quality in a sub-tropical climate. Brit. J. Environ. Clim. Chang. 2013, 3, 197–214. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Hancock, G.R.; Hugo, J.; Webb, A.A.; Turner, L. Sediment transport in steep forested catchments—An assessment of scale and disturbance. J. Hydrol. 2017, 547, 613–622. [Google Scholar] [CrossRef]
- Takken, I.; Croke, J.; Lane, P. A methodology to assess the delivery of road runoff in forestry environments. Hydrol. Process. 2008, 22, 254–264. [Google Scholar] [CrossRef]
- Kalantari, Z.; Cavalli, M.; Cantone, C.; Crema, S.; Destouni, G. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Sci. Total Environ. 2017, 581–582, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Katz, H.A.; Daniels, J.M.; Ryan, S. Slope-area thresholds of road-induced gully erosion and consequent hillslope–channel interactions. Earth Surf. Process. Landf. 2014, 39, 285–295. [Google Scholar] [CrossRef]
- Hao, R.; Huang, X.; Cai, Z.; Xiao, H.; Wang, J.; Shi, Z. Incorporating sediment connectivity index into MUSLE model to explore soil erosion and sediment yield relationships at event scale. J. Hydrol. 2022, 614, 128579. [Google Scholar] [CrossRef]
- Najafi, S.; Dragovich, D.; Heckmann, T.; Sadeghi, S.H. Sediment connectivity concepts and approaches. Catena 2021, 196, 104880. [Google Scholar] [CrossRef]
- Poeppl, R.E.; Keesstra, S.D.; Maroulis, J. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology 2016, 19, 237–250. [Google Scholar] [CrossRef]
- Croke, J.; Mockler, S. Gully initiation and road-to-stream linkage in a forested catchment, southeastern Australia. Earth Surf. Process. Landf. 2001, 26, 205–217. [Google Scholar] [CrossRef]
- Zhao, Q.; Jing, Y.; Wang, A.; Yu, Z.; Liu, Y.; Yu, J.; Liu, G.; Ding, S. Response of sediment connectivity to altered convergence processes induced by forest roads in mountainous watershed. Remote Sens. 2022, 14, 3603. [Google Scholar] [CrossRef]
- Phillips, J.D.; Marion, D.A.; Kilcoyne, K.G. Fine sediment storage in an eroding forest trail system. Phys. Geogr. 2021, 42, 50–72. [Google Scholar] [CrossRef]
- Bowling, L.C.; Lettenmaier, D.P. The effects of forest roads and harvest on catchment hydrology in a mountainous maritime environment. In Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas; Water Science and Application; American Geophysical Union: Washington, DC, USA, 2001; Volume 2, pp. 145–164. [Google Scholar]
- Buchanan, B.P.; Falbo, K.; Schneider, R.L.; Easton, Z.M.; Walter, M.T. Hydrological impact of roadside ditches in an agricultural watershed in Central New York: Implications for non-point source pollutant transport. Hydrol. Process. 2013, 27, 2422–2437. [Google Scholar] [CrossRef]
- Lane, P.N.; Hairsine, P.B.; Croke, J.C.; Takken, I. Quantifying diffuse pathways for overland flow between the roads and streams of the Mountain Ash forests of central Victoria Australia. Hydrol. Process. 2006, 20, 1875–1884. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Negishi, J.; Sidle, R.C.; Preechapanya, P.; Sutherland, R.A.; Giambelluca, T.W.; Jaiaree, S. Reduction of stream sediment concentration by a riparian buffer: Filtering of road runoff in disturbed headwater basins of montane mainland southeast Asia. J. Environ. Qual. 2006, 35, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Scharrón, C.E.; LaFevor, M.C. Effects of forest roads on runoff initiation in low-order ephemeral streams. Water Resour. Res. 2018, 54, 8613–8631. [Google Scholar] [CrossRef]
- Zanandrea, F.; Paul, L.R.; Michel, G.P.; Kobiyama, M.; Zanini, A.D.; Abatti, B.H. Sediment connectivity: Concepts, principles and applications. Rev. Bras. Geomorfol. 2020, 21, 435–459. [Google Scholar]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Prosser, I.P.; Rutherfurd, I.D.; Olley, J.M.; Young, W.J.; Wallbrink, P.J.; Moran, C.J. Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia. Mar. Freshw. Res. 2001, 52, 81–99. [Google Scholar] [CrossRef]
- Mclaren, P.; Singer, J. Sediment transport and contaminant behavior in the Buffalo River, New York: Implications for river management. J. Coast. Res. 2008, 244, 954–968. [Google Scholar] [CrossRef]
- MacDonald, L.H.; Coe, D. Influence of headwaiter streams on downstream reaches in forested areas. For. Sci. 2007, 53, 148–168. [Google Scholar]
- Wemple, B.C.; Browning, T.; Ziegler, A.D.; Celi, J.; Chun, K.P.; Jaramillo, F.; Leite, N.K.; Ramchunder, S.J.; Negishi, J.N.; Palomeque, X.; et al. Ecohydrological disturbances associated with roads: Current knowledge, research needs, and management concerns with reference to the tropics. Ecohydrology 2018, 11, e1881. [Google Scholar] [CrossRef]
- Molinas, A.; Wu, B. Transport of sediment in large sand-bed rivers. J. Hydraul. Res. 2001, 39, 135–146. [Google Scholar] [CrossRef]
- Lang, A.J.; Aust, W.M.; Bolding, M.C.; McGuire, K.J.; Schilling, E.B. Best management practices influence sediment delivery from road stream crossings to mountain and piedmont streams. For. Sci. 2018, 64, 682–695. [Google Scholar] [CrossRef]
- Dangle, C.; Bolding, M.; Aust, W.; Barrett, S.; Schilling, E. Best management practices influence modeled erosion rates at forest haul road stream crossings in Virginia. J. Am. Water Resour. Assoc. 2019, 55, 1169–1182. [Google Scholar] [CrossRef]
- Brown, K.R.; Mcguire, K.J.; Aust, W.M.; Hession, W.C.; Dolloff, C.A. The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings. Hydrol. Process. 2015, 29, 1129–1140. [Google Scholar] [CrossRef]
- Grace, J.M. Control of sediment export from the forest road prism. Trans. ASAE 2002, 45, 1127–1132. [Google Scholar]
- Grace, J.M.; Elliot, W.J. Influence of Forest Roads and BMPs on Soil Erosion; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011; pp. 1–11. [Google Scholar]
- Kleinschroth, F.; Gourlet-Fleury, S.; Gond, V.; Sist, P.; Healey, J.R. Logging roads in tropical forests: Synthesis of literature written in French and English highlights environmental impact reduction through improved engineering. Bois For. Trop. 2016, 328, 13–26. [Google Scholar] [CrossRef]
- Sugden, B.D. Estimated sediment reduction with forestry best management practices implementation on a legacy forest road network in the northern Rocky Mountains. For. Sci. 2018, 64, 214–224. [Google Scholar] [CrossRef]
- Sawyers, B.C.; Bolding, M.C.; Aust, W.M.; Lakel, W.A. Effectiveness and implementation costs of overland skid trail closure techniques in the Virginia Piedmont. J. Soil Water Conserv. 2012, 67, 300–310. [Google Scholar] [CrossRef]
- Wade, C.R.; Bolding, M.C.; Aust, W.M.; Lakel, W.A. Comparison of Five Erosion Control Techniques for Bladed Skid Trails in Virginia (vol 36, pg 191, 2012). South. J. Appl. For. 2013, 37, 4. [Google Scholar]
- Lang, A.; Aust, W.; Bolding, M.; Barrett, S.; McGuire, K.; Lakel III, W. Streamside management zones compromised by stream crossings, legacy gullies, and over-harvest in the piedmont. J. Am. Water Resour. Assoc. 2015, 51, 1153–1164. [Google Scholar] [CrossRef]
- Megahan, W.F.; Wilson, M.; Monsen, S.B. Sediment production from granitic cutslopes on forest roads in Idaho, USA. Earth Surf. Process. Landf. 2001, 26, 153–163. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Hosseini, S.A. Effect of bioengineering treatments on reduction of soil erosion from road cut slope and fill slope. J. For. Sci. 2023, 69, 367–376. [Google Scholar] [CrossRef]
Road Type | Erosion Units | Annual Erosion Intensity (t ha−1 yr−1) | Study Area and Data Sources |
---|---|---|---|
Forest logging road | Gravel road surface | 10~16 | Piedmont, Virginia, USA [42] |
Soil road surface | 34~87 | Piedmont, Virginia, USA [42] | |
Soil road surface | 272~275 | Peninsular Malaysia [43] | |
Forest pathway | Soil road surface | 204 | Southwest Puerto Rico [6] |
Soil road surface | 170 | Central Spain [44] | |
Soil road surface | 54 | United States Virgin Islands [2] | |
Cut slope | 20~70 | United States Virgin Islands [2] | |
Forest unpaved road | Soil road surface + Cut slope | 5258 | Shandong, China [3] |
Soil road surface + Cut slope | 2773 | Shandong, China [3] | |
Soil road surface + Cut slope | 670 | Shandong, China [3] | |
Cut slope + Ditch | 5290 | United States Virgin Islands [19] | |
Cut slope + Ditch | 2670 | Victoria, Australia [45] | |
Gravel road surface + Ditch | 513 | Victoria, Australia [45] | |
Cut slope | 220 | Palencia, Spain [46] | |
Road surface | 247 | South Africa [20] | |
Fill slope | 3~44 | Hahn Province, Spain [47] |
Erosion Units | Erosion Intensity per Event (g m−2) | Study Area |
---|---|---|
Cut slope | 160 | Northeast Spain [32] |
Road surface | 14 | Northeast Spain [32] |
Fill slope | 10 | Northeast Spain [32] |
Cut slope | 486 | Mediterranean [48] |
Road surface | 162 | Mediterranean [48] |
Fill slope | 27 | Mediterranean [48] |
Cut slope | 106 | Southern Spain [40] |
Fill slope | 17 | Southern Spain [40] |
Empirical Model | Advantage | Disadvantage |
WARSEM | Considers various erosion units of road prism and is applicable to watershed scale. | Overestimates the sediment yield of road segments. |
RUSLE | Predicts sediment yield and categorizes erosion risk. | Applicable to farmland rather than road. |
ROADMOD | Integrates GIS and network algorithms. | Only considers road surface. |
SEDMODL | Identifies road segments with high sediment yield. | Underestimates overall sediment yield. |
STJ-EROS | Adapts well to changes in sediment yield. | Overestimates the overall sediment yield. |
READI | Assesses sediment yield and transport from road to stream. | Requires relatively high accuracy DEM. |
Physical Model | Advantage | Disadvantage |
WEPP | Predicts sediment yield at multi-time scales. | Involves excessive submodels and parameters. |
KINEROS2 | Predicts sediment yield and transportation of rainfall events. | Lacks consideration of traffic conditions. |
DHSVM | Evaluates the interaction between hydrology, soil, and vegetation. | Requires detailed input parameters. |
Gully Pathway | Partially Gullied Pathway | Diffuse Pathway | Data Sources | |
---|---|---|---|---|
Average sediment transport distance (m) | 86.25 ± 6.4 a | 46.25 ± 7.2 b | 22.75 ± 5.6 c | [15,73,80] |
Average volume of runoff to reach streams (m3) | 11.50 ± 3.2 a | 7.23 ± 1.5 b | 2.83 ± 0.3 c | [81,82,83] |
Type | Measure | Reduction Rate of Sediment Production (%) | Data Sources |
---|---|---|---|
Engineering measure | Gravel Pavement | 73.18 ± 9.6 b | [108,109,110,111] |
Dam and Ditch | 58.76 ± 10.9 b | ||
Hardwood Slash | 90.65 ± 1.1 a | ||
Sediment Pond | 92.50 ± 3.5 a | ||
Biological measure | Sow Grass | 84.22 ± 8.5 a | [112,113,114,115] |
Cover Mulch | 83.93 ± 13.2 a | ||
Erosion Control Mat | 91.67 ± 5.5 a | ||
Plant Shrub | 59.65 ± 12.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhao, Q.; Yu, Z.; Liu, Y.; Ding, S. A Review of the Sediment Production and Transport Processes of Forest Road Erosion. Forests 2024, 15, 454. https://doi.org/10.3390/f15030454
Yu J, Zhao Q, Yu Z, Liu Y, Ding S. A Review of the Sediment Production and Transport Processes of Forest Road Erosion. Forests. 2024; 15(3):454. https://doi.org/10.3390/f15030454
Chicago/Turabian StyleYu, Jinhai, Qinghe Zhao, Zaihui Yu, Yi Liu, and Shengyan Ding. 2024. "A Review of the Sediment Production and Transport Processes of Forest Road Erosion" Forests 15, no. 3: 454. https://doi.org/10.3390/f15030454
APA StyleYu, J., Zhao, Q., Yu, Z., Liu, Y., & Ding, S. (2024). A Review of the Sediment Production and Transport Processes of Forest Road Erosion. Forests, 15(3), 454. https://doi.org/10.3390/f15030454