Spatial and Temporal Patterns of Non-Structural Carbohydrates in Faxon Fir (Abies fargesii var. faxoniana), Subalpine Mountains of Southwest China
Abstract
:1. Introduction
- The whole-tree allocation pattern will be as follows: the terminal organs contribute more due to Faxon fir trees needing to store more energy to cope with environmental stress during the cold season, and NSCs are significantly lower in the warmer season than the cold season.
- Faxon fir organs (especially the terminal organs) accumulate a higher concentration of NSCs in winter to enhance tissue resistance to high-altitude low temperature so as to successfully overwinter.
- Due to its unique geographical environment, the distribution pattern of NSCs in Faxon fir at high altitudes may be influenced by various factors.
2. Materials and Methods
Study Area
3. Field Data Collection
3.1. Climate Data
3.2. Growing Season and Non-Growing Season Determination
3.3. Sample Collection and Pre-Dawn Leaf Water Potential Measurement
3.4. Laboratory Measurement
3.4.1. Morphological Traits Measurement and Calculation
3.4.2. Non-Structural Carbohydrate Measurements
3.5. Chemical Analyses
3.6. Data Manipulation and Statistical Analysis
4. Results
4.1. Spatio-Temporal Non-Structural Carbohydrate Pattern of Faxon Fir
4.2. Various Factors Influence the Temporal and Spatial Distribution Pattern of Non-Structural Carbohydrates in Faxon Fir Organs
5. Discussion
5.1. Terminal Organs Needles and Roots’ NSC Concentration Is Higher than That of Branches and Trunk
5.2. Plant Organs Have Higher Concentrations of NSCs in the Low-Temperature Season than in the Warmer Season
5.3. NSCs Improve the Resistance of Faxon Fir to Environmental Stress
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NSC | Non-structural carbohydrates |
Ψ | Pre-dawn leaf water potential |
Soil.T | Soil temperature |
MAT | Mean annual temperature |
MMT | Mean monthly temperature |
starchNeedle | Needle starch concentration |
starchBranch | Branch starch concentration |
starchTrunk | Trunk starch concentration |
starchRoot | Root starch concentration |
sugarNeedle | Needle soluble sugar concentration |
sugarBranch | Branch soluble sugar concentration |
sugarTrunk | Trunk soluble sugar concentration |
sugarRoot | Root soluble sugar concentration |
CRoot | Carbon content of root |
CTrunk | Carbon content of trunk |
CNeedle | Carbon content of needle |
CBranch | Carbon content of branch |
LA/SA | Leaf area per unit sapwood area |
LMA | Leaf mass per area |
TLD | Tracheid lumen diameter |
References
- Richardson, A.D.; Carbone, M.S.; Keenan, T.F.; Czimczik, C.I.; Hollinger, D.Y.; Murakami, P.; Schaberg, P.G.; Xu, X. Seasonal dynamics and age of stemwood non-structural carbohydrates in temperate forest trees. New Phytol. 2013, 197, 850–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quentin, A.G.; Pinkard, E.A.; Ryan, M.G.; Tissue, D.T.; Baggett, L.S.; Adams, H.D.; Maillard, P.; Marchand, J.; Landhäusser, S.M.; Lacointe, A.; et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 2015, 35, 1146–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J. Seasonal variations in sugars of conifers with some observations on cold resistance. For. Sci. 1959, 5, 56–63. [Google Scholar]
- Parker, J. Seasonal changes in cold resistance and free sugars of some hardwood tree barks. For. Sci. 1962, 8, 255–262. [Google Scholar]
- Klein, T.; Vitasse, Y.; Hoch, G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiol. 2016, 36, 847–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P.B.; Tjoelker, M.G. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiol. 2000, 20, 837–847. [Google Scholar] [CrossRef]
- Smith, M.G.; Miller, R.; Arndt, S.; Kasel, S.; Bennett, L.T. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol. 2018, 38, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Su, J.; Li, S.; Lang, X.; Huang, X. Non-structural carbohydrates regulated by season and species in the subtropical monsoon broad-leaved evergreen forest of Yunnan Province, China. Sci. Rep. 2018, 8, 1083. [Google Scholar] [CrossRef] [Green Version]
- Furze, M.E.; Huggett, B.A.; Aubrecht, D.M.; Stolz, C.D.; Carbone, M.S.; Richardson, A.D. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol. 2019, 221, 1466–1477. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, W.; Li, R.; Xu, M.; Wang, S. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees 2016, 30, 1863–1871. [Google Scholar] [CrossRef]
- Signori-Müller, C.; Oliveira, R.S.; Barros, F.d.V.; Tavares, J.V.; Gilpin, M.; Diniz, F.C.; Zevallos, M.J.M.; Yupayccana, C.A.S.; Acosta, M.; Bacca, J.; et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 2021, 12, 2310. [Google Scholar] [CrossRef]
- De Roo, L.; Salomón, R.L.; Oleksyn, J.; Steppe, K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. New Phytol. 2020, 228, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; Gear, L.; Hultine, K.R.; Koch, G.W.; Ogle, K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. Plant Cell Environ. 2020, 43, 1467–1483. [Google Scholar] [CrossRef] [PubMed]
- Dietze, M.C.; Sala, A.; Carbone, M.S.; Czimczik, C.I.; Mantooth, J.A.; Richardson, A.D.; Vargas, R. Nonstructural Carbon in Woody Plants. Annu. Rev. Plant Biol. 2014, 65, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Carbone, M.S.; Huggett, B.A.; Furze, M.E.; Czimczik, C.I.; Walker, J.C.; Xu, X.; Schaberg, P.G.; Murakami, P. Distribution and mixing of old and new nonstructural carbon in two temperate trees. New Phytol. 2015, 206, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, L.; Dai, Y.; Wan, X.; Liu, S. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Sci. Rep. 2017, 7, 10125. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.-Y.; Han, S.-J.; Zhang, J.-H.; Wang, M.; Yin, X.-H.; Fang, L.-D.; Yang, D.; Hao, G.-Y. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree Physiol. 2018, 38, 1792–1804. [Google Scholar] [CrossRef]
- Secchi, F.; Zwieniecki, M.A. Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling. Plant Cell Environ. 2011, 34, 514–524. [Google Scholar] [CrossRef]
- Erbilgin, N.; Zanganeh, L.; Klutsch, J.G.; Chen, S.; Zhao, S.; Ishangulyyeva, G.; Burr, S.J.; Gaylord, M.; Hofstetter, R.; Keefover-Ring, K.; et al. Combined drought and bark beetle attacks deplete non-structural carbohydrates and promote death of mature pine trees. Plant Cell Environ. 2021, 44, 3866–3881. [Google Scholar] [CrossRef] [PubMed]
- Hoch, G.; Popp, M.; Körner, C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 2002, 98, 361–374. [Google Scholar] [CrossRef]
- McDowell, N.G. Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiol. 2011, 155, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, H.; Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytol. 2016, 211, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Piper, F.I.; Fajardo, A.; Hoch, G. Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. Tree Physiol. 2017, 37, 1001–1010. [Google Scholar] [CrossRef]
- Han, H.; He, H.; Wu, Z.; Cong, Y.; Zong, S.; He, J.; Fu, Y.; Liu, K.; Sun, H.; Li, Y.; et al. Non-Structural Carbohydrate Storage Strategy Explains the Spatial Distribution of Treeline Species. Plants 2020, 9, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.; Ruthrof, K.X.; et al. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- Alexander, J.M.; Diez, J.M.; Levine, J.M. Novel competitors shape species’ responses to climate change. Nature 2015, 525, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Obser-vations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrik, P.; Petek-Petrik, A.; Kurjak, D.; Mukarram, M.; Klein, T.; Gömöry, D.; Střelcová, K.; Frýdl, J.; Konôpková, A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. Plant Biol. 2022, 24, 1287–1296. [Google Scholar] [CrossRef]
- Schuldt, B.; Knutzen, F.; Delzon, S.; Jansen, S.; Müller-Haubold, H.; Burlett, R.; Clough, Y.; Leuschner, C. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol. 2016, 210, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Hao, B.; Hartmann, H.; Li, Y.; Liu, H.; Shi, F.; Yu, K.; Li, X.; Li, Z.; Wang, P.; Allen, C.D.; et al. Precipitation Gradient Drives Divergent Relationship between Non-Structural Carbohydrates and Water Availability in Pinus tabulaeformis of Northern China. Forests 2021, 12, 133. [Google Scholar] [CrossRef]
- D’andrea, E.; Scartazza, A.; Battistelli, A.; Collalti, A.; Proietti, S.; Rezaie, N.; Matteucci, G.; Moscatello, S. Unravelling resilience mechanisms in forests: Role of non-structural carbohydrates in responding to extreme weather events. Tree Physiol. 2021, 41, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Lutz, J.A.; Wang, L.; Shugart, H.H.; Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Glob. Chang. Biol. 2020, 26, 6974–6988. [Google Scholar] [CrossRef]
- Kono, Y.; Ishida, A.; Saiki, S.-T.; Yoshimura, K.; Dannoura, M.; Yazaki, K.; Kimura, F.; Yoshimura, J.; Aikawa, S.-I. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2019, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- McDowell, N.G.; Williams, A.P.; Xu, C.; Pockman, W.T.; Dickman, L.T.; Sevanto, S.; Pangle, R.E.; Limousin, J.M.; Plaut, J.J.; Mackay, D.S.; et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 2016, 6, 295–300. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Wu, X.; Fu, B.; Liu, G.; Shi, S.; Fan, Z.; Wang, X. Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: Evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia 2020, 63, 125751. [Google Scholar] [CrossRef]
- He, M.; Wang, H.S.; Sun, J.X. Characters of ecosystem vulnerability in southwestern China based on vegetation productivity. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2019, 30, 429–438. [Google Scholar]
- Xu, K.; Wang, X.; Jiang, C.; Sun, O.J. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 2020, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jiang, C.; Wang, X.; Feng, Q.; Liu, X.; Tang, Z.; Sun, O.J. Nutrient trade-offs mediated by ectomycorrhizal strategies in plants: Evidence from an Abies species in subalpine forests. Ecol. Evol. 2021, 11, 5281–5294. [Google Scholar] [CrossRef]
- Li, Z.; Keyimu, M.; Fan, Z.; Wang, X. Climate sensitivity of conifer growth doesn’t reveal distinct low–high dipole along the elevation gradient in the Wolong National Natural Reserve, SW China. Dendrochronologia 2020, 61, 125702. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Jiang, C.; Wang, X.; Feng, Q.; Liu, X.; Sun, O.J. Choices of ectomycorrhizal foraging strategy as an important mechanism of environmental adaptation in Faxon fir (Abies fargesii var. faxoniana). For. Ecol. Manag. 2021, 495, 119372. [Google Scholar] [CrossRef]
- Zhang, W.R. The forest soils of Wolong Natural Reserve and its vertical zonalties distribution. Sci. Silvae Sin. 1983, 19, 254–268. [Google Scholar]
- Kang, W.; Tian, C.; Kang, D.; Wang, M.; Li, Y.; Wang, X.; Li, J. Effects of gap microsites and bamboo on Abies faxoniana regeneration in a subalpine forest, China. J. Plant Interact. 2015, 10, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Florin, R. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 1963, 20, 121–324. [Google Scholar]
- Xu, Y.; Gao, X.; Shen, Y.; Xu, C.; Shi, Y.; Giorgi, F. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci. 2009, 26, 763–772. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, W.; Fu, C. Calibrating and Evaluating Reanalysis Surface Temperature Error by Topographic Correction. J. Clim. 2008, 21, 1440–1446. [Google Scholar] [CrossRef]
- Alvarez-Uria, P.; Körner, C. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct. Ecol. 2007, 21, 211–218. [Google Scholar] [CrossRef]
- Ferrar, P.J.; Cochrane, P.M.; Slatyer, R.O. Factors influencing germination and establishment of Eucalyptus pauciflora near the alpine tree line. Tree Physiol. 1988, 4, 27–43. [Google Scholar] [CrossRef]
- Pan, S.-A.; Hao, G.; Li, X.; Feng, Q.; Liu, X.; Sun, O.J. Altitudinal variations of hydraulic traits in Faxon fir (Abies fargesii var. faxoniana): Mechanistic controls and environmental adaptability. For. Ecosyst. 2022, 9, 100040. [Google Scholar] [CrossRef]
- Seifter, S.; Muntwyler, E.; Harkness, D.M. Some Effects of Continued Protein Deprivation, with and without Methionine Supplementation, on Intracellular Liver Components. Exp. Biol. Med. 1950, 75, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, U. Components of leaf dry mass per area—Thickness and density—Alter photosynthetic capacity in reverse directions in woody plants. New Phytol. 1999, 144, 35–47. [Google Scholar] [CrossRef]
- Bertin, N.; Tchamitchian, M.; Baldet, P.; Devaux, C.; Brunel, B.; Gary, C. Contribution of carbohydrate pools to the variations in leaf mass per area within a tomato plant. New Phytol. 1999, 143, 53–61. [Google Scholar] [CrossRef]
- Mo, Q.; Chen, Y.; Yu, S.; Fan, Y.; Peng, Z.; Wang, W.; Li, Z.; Wang, F. Leaf nonstructural carbohydrate concentrations of understory woody species regulated by soil phosphorus availability in a tropical forest. Ecol. Evol. 2020, 10, 8429–8438. [Google Scholar] [CrossRef]
- Imaji, A.; Seiwa, K. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species. Oecologia 2010, 162, 273–281. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 1992, 58, 107–222. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Sala, A.; Asensio, D.; Galiano, L.; Hoch, G.; Palacio, S.; Piper, F.I.; Lloret, F. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 2016, 86, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Mencuccini, M. Plump trees win under drought. Nat. Clim. Chang. 2014, 4, 666–667. [Google Scholar] [CrossRef]
- Hasibeder, R.; Fuchslueger, L.; Richter, A.; Bahn, M. Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytol. 2015, 205, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Tomasella, M.; Casolo, V.; Natale, S.; Petruzzellis, F.; Kofler, W.; Beikircher, B.; Mayr, S.; Nardini, A. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra. New Phytol. 2021, 231, 108–121. [Google Scholar] [CrossRef] [PubMed]
- McCulloh, K.A.; Johnson, D.M.; Meinzer, F.C.; Lachenbruch, B. An annual pattern of native embolism in upper branches of four tall conifer species. Am. J. Bot. 2011, 98, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, Z.; Zhang, K.; Cornelissen, J.H.C. Geographic pattern and effects of climate and taxonomy on nonstructural carbohydrates of Artemisia species and their close relatives across northern China. Biogeochemistry 2015, 125, 337–348. [Google Scholar] [CrossRef]
- Long, R.W.; Dudley, T.L.; D’Antonio, C.M.; Grady, K.C.; Bush, S.E.; Hultine, K.R. Spenders versus savers: Climate-induced carbon allocation trade-offs in a recently introduced woody plant. Funct. Ecol. 2021, 35, 1640–1654. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, Y.; Chen, Y.; Liu, G. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continuous drought stress. Trees 2015, 29, 1837–1849. [Google Scholar] [CrossRef]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Wingler, A.; Henriques, R. Sugars and the speed of life—Metabolic signals that determine plant growth, development and death. Physiol. Plant. 2022, 174, e13656. [Google Scholar] [CrossRef]
- Hansen, J.; Beck, E. Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 1994, 8, 172–182. [Google Scholar] [CrossRef]
- Yano, R.; Nakamura, M.; Yoneyama, T.; Nishida, I. Starch-Related α-Glucan/Water Dikinase Is Involved in the Cold-Induced Development of Freezing Tolerance in Arabidopsis. Plant Physiol. 2005, 138, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Zhang, K.; Zhang, Q.; Xu, Y. Temporal variations of mobile carbohydrates in Abies fargesii at the upper tree limits. Plant Biol. 2015, 17, 106–113. [Google Scholar] [CrossRef]
- Bush, E.; Wilson, P.; Shepard, D.; McCrimmon, J. Freezing Tolerance and Nonstructural Carbohydrate Composition of Carpetgrass (Axonopus affinis Chase). Hortscience 2000, 35, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.; Swanson, F.J. The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Front. Ecol. Environ. 2011, 9, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [Green Version]
- Piper, F.I.; Paula, S. The Role of Nonstructural Carbohydrates Storage in Forest Resilience under Climate Change. Curr. For. Rep. 2020, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Huang, Z.; Wang, Z.; Chen, Y.; Wen, Z.; Liu, B.; Tigabu, M. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. BMC Plant Biol. 2020, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.-N.; Gessler, A.; Saurer, M.; Hagedorn, F.; Gao, D.-C.; Wang, X.-Y.; Schaub, M.; Li, M.-H.; Shen, W.-J.; Schönbeck, L. Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought. Tree Physiol. 2021, 41, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W. Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pineda, E.; Sáenz-Romero, C.; Ortega-Rodríguez, J.M.; Blanco-García, A.; Madrigal-Sánchez, X.; Lindig-Cisneros, R.; Lopez-Toledo, L.; Pedraza-Santos, M.E.; Rehfeldt, G.E. Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecol. Appl. 2020, 30, e02041. [Google Scholar] [CrossRef]
Factors | Soluble Sugar | Starch | ||||
---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | |
Season | 3 | 596.68 | <0.001 | 3 | 197.30 | <0.001 |
Organ | 3 | 3306.84 | <0.001 | 3 | 409.15 | <0.001 |
Altitude | 4 | 87.88 | <0.001 | 4 | 15.12 | <0.001 |
Season × Organ | 9 | 122.77 | <0.001 | 9 | 45.70 | <0.001 |
Season × Altitude | 12 | 3.01 | <0.001 | 12 | 6.12 | <0.001 |
Organ × Altitude | 12 | 42.96 | <0.001 | 12 | 11.02 | <0.001 |
Season × Organ × Altitude | 36 | 5.76 | <0.001 | 36 | 3.10 | <0.001 |
Pre-Dawn Leaf Water Potential (Bar) | ||||||||
---|---|---|---|---|---|---|---|---|
Altitude (m) | July 2019 | October 2019 | January 2020 | April 2020 | ||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
2800 | −0.60 b | 0.1732 | −3.18 bc | 1.5654 | −7.85 c | 0.3531 | −5.35 c | 0.9992 |
3000 | −1.17 ab | 0.1678 | −1.95 c | 0.3782 | −8.69 c | 0.7019 | −12.99 b | 0.9635 |
3200 | −1.89 a | 0.4151 | −10.53 a | 0.9933 | −15.78 a | 0.5680 | −14.34 ab | 0.8102 |
3400 | −1.61 ab | 0.1795 | −3.83 bc | 0.2083 | −12.76 b | 1.0176 | −15.77 a | 0.2856 |
3600 | −1.10 ab | 0.2470 | −6.47 b | 1.1349 | −14.47 ab | 0.6541 | −14.97 ab | 0.5028 |
Morphological Traits | ||||||
---|---|---|---|---|---|---|
Altitude (m) | LMA | LA/SA | TLD | |||
Mean | SE | Mean | SE | Mean | SE | |
2800 | 0.17 c | 0.0052 | 0.58 c | 0.0234 | 12.46 a | 0.1005 |
3000 | 0.17 c | 0.0042 | 0.70 a | 0.0294 | 10.73 c | 0.0822 |
3200 | 0.22 b | 0.0060 | 0.65 ab | 0.0235 | 10.31 d | 0.0960 |
3400 | 0.24 a | 0.0048 | 0.59 bc | 0.0127 | 11.60 b | 0.0915 |
3600 | 0.23 ab | 0.0035 | 0.67 a | 0.0188 | 9.59 e | 0.0741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Anees, S.A.; Li, X.; Yang, X.; Duan, X.; Li, Z. Spatial and Temporal Patterns of Non-Structural Carbohydrates in Faxon Fir (Abies fargesii var. faxoniana), Subalpine Mountains of Southwest China. Forests 2023, 14, 1438. https://doi.org/10.3390/f14071438
Pan S, Anees SA, Li X, Yang X, Duan X, Li Z. Spatial and Temporal Patterns of Non-Structural Carbohydrates in Faxon Fir (Abies fargesii var. faxoniana), Subalpine Mountains of Southwest China. Forests. 2023; 14(7):1438. https://doi.org/10.3390/f14071438
Chicago/Turabian StylePan, Shao’an, Shoaib Ahmad Anees, Xuhua Li, Xinrui Yang, Xiangguang Duan, and Zhigang Li. 2023. "Spatial and Temporal Patterns of Non-Structural Carbohydrates in Faxon Fir (Abies fargesii var. faxoniana), Subalpine Mountains of Southwest China" Forests 14, no. 7: 1438. https://doi.org/10.3390/f14071438
APA StylePan, S., Anees, S. A., Li, X., Yang, X., Duan, X., & Li, Z. (2023). Spatial and Temporal Patterns of Non-Structural Carbohydrates in Faxon Fir (Abies fargesii var. faxoniana), Subalpine Mountains of Southwest China. Forests, 14(7), 1438. https://doi.org/10.3390/f14071438