Identification of Redundant Patches in Early Urbanized Areas Based on mRMR + SVM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Research Methodology
2.2.1. Circuit Theory Simulation
2.2.2. Patch Importance Ranking Based on mRMR
2.2.3. SVM-Based Redundant Patch Recognition
2.3. Data Sources
3. Results
3.1. Urban Green Space Ecological Network and Cumulative Current Values
3.2. Ranking the Importance of Source Patches
3.3. Patch Redundancy Identification
4. Discussion
4.1. Effectiveness of mRMR + SVM Redundancy Identification Method
4.2. Spatial Management Policy Response Based on Patch Redundancy and Importance
4.3. Advantages and Limitations of mRMR + SVM Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Wu, J.; Wang, X.; Wang, Z.; Zhao, Y. Can policy maintain habitat connectivity under landscape fragmentation? A case study of Shenzhen, China. Sci. Total Environ. 2020, 715, 136829. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, B. Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecol. Indic. 2015, 56, 116–124. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Ignatieva, M.; Stewart, G.H.; Meurk, C. Planning and design of ecological networks in urban areas. Landsc. Ecol. Eng. 2011, 7, 17–25. [Google Scholar] [CrossRef]
- Travers, E.; Härdtle, W.; Matthies, D. Corridors as a tool for linking habitats—Shortcomings and perspectives for plant conservation. J. Nat. Conserv. 2021, 60, 125974. [Google Scholar] [CrossRef]
- Jordán, F.; Baldi, A.; Orci, K.-M.; Rácz, I.; Varga, Z. Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landsc. Ecol. 2003, 18, 83–92. [Google Scholar] [CrossRef]
- Parker, K.; Head, L.; Chisholm, L.A.; Feneley, N. A conceptual model of ecological connectivity in the Shellharbour Local Government Area, New South Wales, Australia. Landsc. Urban Plan. 2008, 86, 47–59. [Google Scholar] [CrossRef]
- Esbah, H.; Cook, E.A.; Ewan, J. Effects of Increasing Urbanization on the Ecological Integrity of Open Space Preserves. Environ. Manag. 2009, 43, 846–862. [Google Scholar] [CrossRef]
- Linehan, J.; Gross, M.; Finn, J. Greenway planning: Developing a landscape ecological network approach. Landsc. Urban Plan. 1995, 33, 179–193. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Yu, K. Ecological Security Patterns in Landscapes and GIS Application. Ann. GIS 1995, 1, 88–102. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; David, J.L. A spatially explicit hierarchical approach to modeling complex ecological systems: Theory and applications. Ecol. Model. 2002, 153, 7–26. [Google Scholar] [CrossRef]
- Pinto, N.; Keitt, T.H. Beyond the least-cost path: Evaluating corridor redundancy using a graph-theoretic approach. Landsc. Ecol. 2009, 24, 253–266. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J. Linking the minimum spanning tree and edge betweenness to understand arterial corridors in an ecological network. Landsc. Ecol. 2021, 36, 1549–1565. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Shi, X. Cellular automata for simulating land use changes based on support vector machines. Comput. Geosci. 2008, 34, 592–602. [Google Scholar] [CrossRef]
- Luo, J.; Liu, A.; Yap, P.; Liedberg, B. An mRMR-SVM Approach for Opto-Fluidic Microorganism Classification. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 666–669. [Google Scholar]
- Wu, J.; Zhang, S.; Luo, Y.; Wang, H.; Zhao, Y. Assessment of risks to habitat connectivity through the stepping-stone theory: A case study from Shenzhen, China. Urban For. Urban Green. 2022, 71, 127532. [Google Scholar] [CrossRef]
- Gomez, F.; Rajapakse, A.; Annakkage, U.; Fernando, I. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; p. 1. [Google Scholar] [CrossRef]
- Cook, E. Ecological Networks in Urban Landscapes; Wageningen Universiteit: Wageningen, The Netherlands, 2000; ISBN 90-5808-271-7. [Google Scholar]
- Vogt, P.; Riitters, K.H.; Iwanowski, M.; Estreguil, C.; Kozak, J.; Soille, P. Mapping landscape corridors. Ecol. Indic. 2007, 7, 481–488. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Forman, R.T.T. Corridors in a landscape: Their ecological structure and function. Ecology (CSSR) 1983, 2, 375–387. [Google Scholar]
- Jim, C.; Liu, H. Species diversity of three major urban forest types in Guangzhou City, China. For. Ecol. Manag. 2001, 146, 99–114. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Singleton, P.H.; Gaines, W.L.; Lehmkuhl, J.F. Landscape Permeability for Large Carnivores in Washington: A Geographic Information System Weighted-Distance and Least-Cost Corridor Assessment; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2002.
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Cheng, F.; Zhang, Y.; Hou, X.; Dong, S.; Coxixo, A. Effects of road network on Asian elephant habitat and connectivity between the nature reserves in Xishuangbanna, Southwest China. J. Nat. Conserv. 2017, 38, 11–20. [Google Scholar] [CrossRef]
- Zhou, D.; Song, W. Identifying Ecological Corridors and Networks in Mountainous Areas. Int. J. Environ. Res. Public Health 2021, 18, 4797. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Matthews, M.J.; O’Connor, S.; Cole, R.S. Database for the New York State urban wildlife habitat inventory. Landsc. Urban Plan. 1988, 15, 23–37. [Google Scholar] [CrossRef]
- Sandström, U.; Angelstam, P.; Mikusiński, G. Ecological diversity of birds in relation to the structure of urban green space. Landsc. Urban Plan. 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Oliver, I.; Smith, P.L.; Lunt, I.; Parkes, D. Pre-1750 vegetation, naturalness and vegetation condition: What are the implications for biodiversity conservation? Ecol. Manag. Restor. 2002, 3, 176–178. [Google Scholar] [CrossRef]
- Carter, G.M.; Stolen, E.D.; Breininger, D.R. A rapid approach to modeling species–habitat relationships. Biol. Conserv. 2006, 127, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Dickson, B.G.; Albano, C.M.; McRae, B.H.; Anderson, J.J.; Theobald, D.M.; Zachmann, L.J.; Sisk, T.D.; Dombeck, M.P. Informing Strategic Efforts to Expand and Connect Protected Areas Using a Model of Ecological Flow, with Application to the Western United States. Conserv. Lett. 2017, 10, 564–571. [Google Scholar] [CrossRef]
Type | Factors | Classification Index | Resistance Value |
---|---|---|---|
Terrain type | Slope | <3° | 1 |
3–6° | 20 | ||
6–10° | 100 | ||
10–16° | 200 | ||
>16° | 600 | ||
Elevation | <300 m | 50 | |
300–400 m | 150 | ||
400–550 m | 300 | ||
550–750 m | 500 | ||
>750 m | 600 | ||
Relief amplitude | <50 m | 70 | |
50–100 m | 150 | ||
100–200 m | 300 | ||
>200 m | 700 | ||
Environmental conditions type | Land use and land cover (LULC) | Forest | 1 |
Grasslands | 15 | ||
Cultivated lands | 40 | ||
Bare land | 70 | ||
Water | 600 | ||
Urban and build–up | 1000 | ||
Normalized difference vegetation index (NDVI) | 0.227–0.713 | 1 | |
0.155–0.227 | 5 | ||
0.081–0.155 | 25 | ||
0–0.081 | 75 | ||
−0.522–0 | 100 | ||
Human influence type | Distance from road | 500–1000 m | 125 |
200–500 m | 250 | ||
50–200 m | 400 | ||
<50 m | 800 |
Overwhelmingly Important | Highly Important | Moderately Important | Slightly Important | Redundant | |
---|---|---|---|---|---|
Implementation list | Adhere to red lines, detect early warnings, and set aside buffer zones | Avoidance for natural development | A small amount of artificial protection against vulnerable elements | Artificially assisted habitat restoration | Allow a small amount of human disturbance and development activities |
Prohibited List | Prohibit any kind of ecological resource seizure | Prohibit the breakthrough of the ecological red line | Prohibit the change of land use type | Prohibit further development | Prohibit complete change of land use type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, B.; Xiao, H.; Du, C.; He, M. Identification of Redundant Patches in Early Urbanized Areas Based on mRMR + SVM. Forests 2023, 14, 1477. https://doi.org/10.3390/f14071477
Zhang X, Li B, Xiao H, Du C, He M. Identification of Redundant Patches in Early Urbanized Areas Based on mRMR + SVM. Forests. 2023; 14(7):1477. https://doi.org/10.3390/f14071477
Chicago/Turabian StyleZhang, Xiaolei, Bo Li, Hongyan Xiao, Chunlan Du, and Meng He. 2023. "Identification of Redundant Patches in Early Urbanized Areas Based on mRMR + SVM" Forests 14, no. 7: 1477. https://doi.org/10.3390/f14071477
APA StyleZhang, X., Li, B., Xiao, H., Du, C., & He, M. (2023). Identification of Redundant Patches in Early Urbanized Areas Based on mRMR + SVM. Forests, 14(7), 1477. https://doi.org/10.3390/f14071477