Soil Nutrient Availability Regulates Microbial Community Composition and Enzymatic Activities at Different Soil Depths along an Elevation Gradient in the Nanling Nature Reserve, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. Analysis of Soil Properties
2.3. Composition of Soil Microbial Community
2.4. Enzyme Analysis
2.5. Vector Analysis for Measurement of Resource Limitation
2.6. Statistical Analysis
3. Results
3.1. Soil Chemical Properties and Nutrient Stoichiometry
3.2. Effect of Elevation and Soil Depth on the GP:GN Ratio
3.3. Effect of Elevation and Soil Depth on Enzymatic Activities
4. Discussion
4.1. Soil Nutrient Availability Regulates GP:GN Ratio
4.2. Response of Enzyme Activities to Soil Nutrient Availability
4.3. Relationship between GP:GN Ratio and Enzyme Activities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The microbial efficiency matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Canarini, A.; Schmidt, H.; Fuchslueger, L.; Martin, V.; Herbold, C.W.; Zezula, D.; Gündler, P.; Hasibeder, R.; Jecmenica, M.; Bahn, M.; et al. The ecological memory of recurrent droughts modifies soil processes through changes in soil microbial communities. Nat. Commun. 2021, 12, 5308. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Follstad Shah, J.J.F. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 313–343. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Hou, E.; Liu, Y.; Wen, D. Altitudinal patterns and control of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci. Rep. 2016, 6, 24261. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Sundqvist, M.K.; Sanders, N.J.; Wardle, D.A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Ade, L.; Wu, X.; Zi, H.; Luo, X.; Wang, C. Changes in soil C:N:P stoichiometry and microbial structure with soil depth in two forest soils. Forests 2019, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.; Gleixner, G. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 2008, 40, 425–433. [Google Scholar] [CrossRef]
- Jing, X.; Chen, X.; Fang, J.; Ji, C.; Shen, H.; Zheng, C.; Zhu, B. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 2020, 141, 107657. [Google Scholar] [CrossRef]
- Demolding, F.; Figueroa, D.; Bååth, E. Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem. 2007, 39, 2485–2495. [Google Scholar] [CrossRef]
- Fanin, N.; Hättenschwiler, S.; Schimann, H.; Fromin, N. Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rainforest. Funct. Ecol. 2015, 29, 140–150. [Google Scholar] [CrossRef]
- Soong, J.L.; Fuchslueger, L.; Penuelas, J.; Richter, A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Chang. Biol. 2020, 26, 1953–1961. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers is an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Niu, G.; Hasi, M.; Wang, R.; Wang, Y.; Geng, Q.; Hu, S.; Xu, X.; Yang, J.; Wang, C.; Han, X.; et al. Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe. Appl. Soil Ecol. 2021, 167, 104054. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Z.; He, Z.; Yu, Z.; Wang, M.; Davis, M.R.; Yang, Y. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broad-leaf plantations. Plant Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Orwin, K.H.; Dickie, I.A.; Wood, J.R.; Bonner, K.I.; Holdaway, R.J. Soil microbial community structure explains the resistance of respiration to a dry-wet cycle, but not soil functioning under static conditions. Funct. Ecol. 2016, 30, 1430–1439. [Google Scholar] [CrossRef] [Green Version]
- Treseder, K.K.; Kivlin, S.N.; Hawkes, C.V. Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecol. Lett. 2011, 14, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Hernández, D.L.; Hobbie, S.E. Effects of Substrate Composition, Quantity, and Diversity on Microbial Activity. Plant Soil 2010, 335, 397–411. [Google Scholar] [CrossRef]
- Fanin, N.; Moorhead, D.; Bertrand, I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N and P dynamics in decaying litter along a land-use gradient. Biogeochemistry 2016, 129, 21–36. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L.; Hill, B.H.; Weintraub, M.N. Vector analysis of ecoenzyme activities reveals constraints on coupled C, N, and P dynamics. Soil Biol. Biochem. 2016, 93, 1–7. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Rinkes, Z.L.; Sinsabaugh, R.L.; Weintraub, M.N. Dynamic relationships between microbial biomass, respiration, inorganic nutrients, and enzyme activities: Informing enzyme-based decomposition models. Front. Microbiol. 2013, 4, 223. [Google Scholar] [CrossRef] [Green Version]
- Leff, J.W.; Nemergut, D.R.; Grandy, A.S.; O’Neill, S.P.; Wickings, K.; Townsend, A.R.; Cleveland, C.C. Eeffects of the soil bacterial community structure on decomposition in tropical rainforests. Ecosystems 2012, 15, 284–298. [Google Scholar] [CrossRef]
- Nemergut, D.R.; Cleveland, C.C.; Wieder, W.R.; Washenberger, C.L.; Townsend, A.R. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rainforest. Soil Biol. Biochem. 2010, 42, 2153–2160. [Google Scholar] [CrossRef]
- Weintraub, S.R.; Wieder, W.R.; Cleveland, C.C.; Townsend, A.R. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry 2013, 114, 313–326. [Google Scholar] [CrossRef]
- Shen, F.; Wu, J.; Fan, H.; Liu, W.; Guo, X.; Duan, H.; Hu, L.; Lei, X.; Wei, X. Soil N/P and C/P ratios regulate the responses of soil microbial community composition and enzyme activities in a long-term, nitrogen-loaded Chinese fir forest. Plant Soil 2019, 436, 91–107. [Google Scholar] [CrossRef]
- Gan, X.H.; Zhang, F.Q.; Gu, J.D.; Guo, Y.D.; Li, Z.Q.; Zhang, W.Q.; Xu, X.Y.; Zhou, Y.; Wen, X.Y.; Xie, G.G.; et al. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2016, 109, 237–251. [Google Scholar] [CrossRef]
- Lu, R. Analysis of Soil Nutrients, 3rd ed.; China Agriculture Press: Beijing, China, 2019. [Google Scholar]
- Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Lai, J.; Zou, Y.; Zhang, J.; Peres-Neto, P.R. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.hp R package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Wu, M.; Chen, L.; Ma, J.; Zhang, Y.; Li, X.; Pang, D. Aggregate-associated carbon contributes to soil organic carbon accumulation along the elevation gradient of Helan Mountains. Soil Biol. Biochem. 2023, 178, 108926. [Google Scholar] [CrossRef]
- Mou, Z.; Kuang, L.; He, L.; Zhang, J.; Zhang, X.; Hui, D.; Li, Y.; Wu, W.; Mei, Q.; He, X.; et al. Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. Catena 2021, 207, 105707. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, X.M.; Zhang, Q.; Zhou, X.-Q.; Liu, Y.-R.; Huang, Q. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 2021, 1, 71. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.Y.H.; Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 2018, 12, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Nazaries, L.; Singh, B.K.; Singh, B.P. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob. Chang. Biol. 2018, 24, 2775–2790. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.M.; DeForest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Shen, H.; Zhao, M.; Xu, L.; Xing, A.; Fang, J. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 2020, 34, 1461–1471. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Cui, Y.; Moorhead, D.L.; Wang, X.; Xu, M.; Wang, X.; Wei, X.; Zhu, Z.; Ge, T.; Peng, S.; Zhu, B.; et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 2022, 419, 115868. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Deng, L.; Guo, X.; Han, F.; Ju, W.; Wang, X.; Chen, H.; Tan, W.; Zhang, X. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 2019, 658, 1440–1451. [Google Scholar] [CrossRef]
- Zheng, H.; Vesterdal, L.; Schmidt, I.K.; Rousk, J. Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils. Soil Biol. Biochem. 2022, 167, 108613. [Google Scholar] [CrossRef]
- Mori, T.; Aoyagi, R.; Kitayama, K.; Mo, J. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol. Biochem. 2021, 160, 108363. [Google Scholar] [CrossRef]
- Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 2020, 146, 107816. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Lashermes, G.; Sinsabaugh, R.L. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biol. Biochem. 2012, 53, 133–141. [Google Scholar] [CrossRef]
- Rosinger, C.; Rousk, J.; Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?—A critical assessment in two subtropical soils. Soil Biol. Biochem. 2019, 128, 115–126. [Google Scholar] [CrossRef]
Soil Depth (cm) | Elevation (m) | pH (in Water) | SWC (g·g−1) | TOC (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|---|---|---|
Surface Soil (0–10) | 1000 | 4.7a (0.10) | 0.27b (0.01) | 89.2b (8.34) | 3.55b (0.42) | 0.23b (0.02) | 28.17a (2.33) | 437.1b (62.50) | 16.60b (2.35) |
1200 | 4.60a (0.08) | 0.25b (0.02) | 101.61b (12.44) | 4.35b (0.64) | 0.15c (0.02) | 24.39b (1.00) | 676.3a (54.94) | 28.86a (2.07) | |
1400 | 4.14b (0.10) | 0.45a (0.03) | 213.12a (38.73) | 10.23a (1.62) | 0.38a (0.03) | 20.11b (0.55) | 539.2b (66.44) | 26.21a (2.70) | |
Subsurface Soil (10–20) | 1000 | 4.90a (0.08) | 0.24b (0.01) | 58.25b (5.32) | 1.88b (0.27) | 0.17b (0.02) | 43.11a (7.74) | 371.9b (50.95) | 11.52b (1.83) |
1200 | 4.66a (0.07) | 0.22b (0.01) | 86.72b (10.18) | 3.47b (0.48) | 0.14c (0.01) | 28.11b (2.93) | 653.7a (68.67) | 25.11a (3.14) | |
1400 | 4.38b (0.10) | 0.34a (0.01) | 94.57a (10.75) | 4.60a (0.52) | 0.25a (0.02) | 20.91b (0.62) | 377.4b (28.22) | 18.14a (1.25) |
Soil Depth (cm) | Elevation (m) | GP (nmol g−1 Dry Soil) | GN (nmol g−1 Dry Soil) | GP:GN |
---|---|---|---|---|
Surface Soil (0–10) | 1000 | 5.27a (0.34) | 6.82a (0.56) | 0.81ab (0.04) |
1200 | 5.47a (0.34) | 7.71a (0.47) | 0.72b (0.02) | |
1400 | 5.37a (0.41) | 6.04a (0.54) | 0.91a (0.05) | |
Subsurface Soil (10–20) | 1000 | 3.91a (0.38) | 4.10a (0.51) | 1.05a (0.07) |
1200 | 4.53a (0.27) | 5.66a (0.43) | 0.82b (0.02) | |
1400 | 4.87a (0.33) | 5.35a (0.47) | 0.95ab (0.04) |
Soil Depth (cm) | Elevation (m) | BG (nmol g−1 Dry Soil) | NAG (nmol g−1 Dry Soil) | AP (nmol g−1 Dry Soil) | Vector Length | Vector Angle |
---|---|---|---|---|---|---|
Surface Soil (0–10) | 1000 | 580b (62.5) | 7.15ab (0.63) | 22,064b (4839) | 0.988b (0.001) | 88.0a (0.22) |
1200 | 800ab (76.0) | 11.7a (2.36) | 36,150a (5761) | 0.986b (0.002) | 88.6a (0.11) | |
1400 | 910a (79.9) | 6.18b (0.43) | 34,813ab (4894) | 0.993a (0.001) | 88.4a (0.14) | |
Subsurface Soil (10–20) | 1000 | 317b (37.5) | 4.93b (0.54) | 11,954b (2515) | 0.984b (0.002) | 88.2a (0.19) |
1200 | 645a (110) | 13.1a (3.11) | 29,662a (6568) | 0.982b (0.002) | 88.6a (0.22) | |
1400 | 469ab (48.1) | 4.57b (0.50) | 19,812a (3384) | 0.990a (0.001) | 88.5a (0.17) |
Soil Depth (cm) | C:N | C:P | N:P | GP | GN | GP:GN | |
---|---|---|---|---|---|---|---|
Surface Soil (0–10) | BG | −0.26 | 0.56 *** | 0.67 *** | 0.39 * | 0.25 | 0.02 |
NAG | 0.26 | 0.63 *** | 0.61 *** | 0.13 | 0.35 * | −0.55 *** | |
AP | −0.06 | 0.80 *** | 0.82 *** | 0.27 | 0.37 * | −0.29 | |
Vector Length | −0.57 *** | −0.11 | 0.03 | 0.30 | −0.03 | 0.41 ** | |
Vector Angle | −0.08 | 0.67 *** | 0.63 *** | 0.02 | 0.33 * | −0.44 ** | |
Subsurface Soil (10–20) | BG | −0.30 | 0.66 *** | 0.79 *** | 0.47 ** | 0.65 *** | −0.74 *** |
NAG | 0.09 | 0.77 *** | 0.68 *** | 0.17 | 0.44 *** | −0.72 *** | |
AP | −0.07 | 0.83 *** | 0.84 *** | 0.24 | 0.47 *** | −0.70 *** | |
Vector Length | −0.71 *** | −0.24 | 0.08 | 0.53 *** | 0.33 * | 0.00 | |
Vector Angle | 0.25 | 0.55 *** | 0.42 ** | −0.18 | 0.00 | −0.33 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Huang, F.; Huang, Y.; Gan, X.; Li, Y.; Wang, M. Soil Nutrient Availability Regulates Microbial Community Composition and Enzymatic Activities at Different Soil Depths along an Elevation Gradient in the Nanling Nature Reserve, China. Forests 2023, 14, 1514. https://doi.org/10.3390/f14081514
Liu M, Huang F, Huang Y, Gan X, Li Y, Wang M. Soil Nutrient Availability Regulates Microbial Community Composition and Enzymatic Activities at Different Soil Depths along an Elevation Gradient in the Nanling Nature Reserve, China. Forests. 2023; 14(8):1514. https://doi.org/10.3390/f14081514
Chicago/Turabian StyleLiu, Mengyun, Fangfang Huang, Yuhui Huang, Xianhua Gan, Yifan Li, and Min Wang. 2023. "Soil Nutrient Availability Regulates Microbial Community Composition and Enzymatic Activities at Different Soil Depths along an Elevation Gradient in the Nanling Nature Reserve, China" Forests 14, no. 8: 1514. https://doi.org/10.3390/f14081514
APA StyleLiu, M., Huang, F., Huang, Y., Gan, X., Li, Y., & Wang, M. (2023). Soil Nutrient Availability Regulates Microbial Community Composition and Enzymatic Activities at Different Soil Depths along an Elevation Gradient in the Nanling Nature Reserve, China. Forests, 14(8), 1514. https://doi.org/10.3390/f14081514