The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe zhennan Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Plot Design and Soil Sampling
2.3. Understory Plant Community Inventory
2.4. Soil Physicochemical Analyses
2.5. Amplification of Full-Length 16S rRNA Genes
2.6. Sequencing Analysis
2.7. Statistical Analysis
3. Results
3.1. Understory Community Structure
3.2. Soil Physicochemical Attributes
3.3. Overview of Full-Length 16S rRNA Amplification
3.4. Soil Bacterial Community Composition
3.5. Predictive Functional Profiles of Bacterial Communities
3.6. Relationship between Soil Physicochemical Attributes and Bacterial and Understory Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Dai, D.; Akhtar, K.; Teng, M.; Yan, Z.; Urbina-Cardona, N.; Mullerova, J.; Zhou, Z. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation. Glob. Ecol. Conserv. 2019, 20, e00775. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Dong, Y.; Hou, L.; Wei, Y.; Jiao, R. Responses of soil microbial community structure to stand densities of Chinese fir plantations. J. For. Res. 2019, 24, 162–167. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Dong, Y.; Jiao, R. Effects of stand density on soil microbial community composition and enzyme activities in subtropical Cunninghamia lanceolate (Lamb.) Hook plantations. For. Ecol. Manag. 2021, 479, 118559. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; Lang, X.; Xu, F.; Li, H.; Zheng, M.; Su, J. Effect of selective logging on soil microbial communities in a Pinus yunnanensis forest. Land Degrad. Dev. 2020, 31, 2268–2280. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Duan, C.; Guo, X.; Wang, Y.; Fang, L. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
- Heydari, M.; Eslaminejad, P.; Kakhki, F.V.; Mirab-balou, M.; Omidipour, R.; Prévosto, B.; Kooch, Y.; Lucas-Borja, M.E. Soil quality and mesofauna diversity relationship are modulated by woody species and seasonality in semiarid oak forest. For. Ecol. Manag. 2020, 473, 118332. [Google Scholar] [CrossRef]
- Yang, F.; Niu, K.; Collins, C.G.; Yan, X.; Ji, Y.; Ling, N.; Zhou, X.; Du, G.; Guo, H.; Hu, S. Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow. Land Degrad. Dev. 2019, 30, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, M.; Imamura, S.; Taniguchi, T.; Tateno, R. Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil? For. Ecol. Manag. 2019, 446, 238–250. [Google Scholar] [CrossRef]
- Courtney, R.; Harris, J.A.; Pawlett, M. Microbial Community Composition in a Rehabilitated Bauxite Residue Disposal Area: A Case Study for Improving Microbial Community Composition. Restor. Ecol. 2014, 22, 798–805. [Google Scholar] [CrossRef]
- Cui, J.; Wang, J.; Xu, J.; Xu, C.; Xu, X. Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition. J. Soils Sediments 2017, 17, 2156–2164. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio Angela, M.; Brewer Tess, E.; Benavent-González, A.; Eldridge David, J.; Bardgett Richard, D.; Maestre Fernando, T.; Singh Brajesh, K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, J.; Chen, H.; Zheng, L.; Wang, K. Soil microbial community responses to forage grass cultivation in degraded karst soils, Southwest China. Land Degrad. Dev. 2018, 29, 4262–4270. [Google Scholar] [CrossRef]
- Liu, C.; Jin, Y.; Hu, Y.; Tang, J.; Xiong, Q.; Xu, M.; Bibi, F.; Beng, K.C. Drivers of soil bacterial community structure and diversity in tropical agroforestry systems. Agric. Ecosyst. Environ. 2019, 278, 24–34. [Google Scholar] [CrossRef]
- Zheng, J.M.; Chen, X.Y.; Chen, L.G.; He, T.Y.; Rong, J.D.; Lin, Y.; Zheng, Y.S. Comprehensive evaluation of soil quality at different stand densities of Dendrocalamus minor var. amoenus plantations. Appl. Ecol. Environ. Res. 2020, 18, 5985–5996. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Dong, Y.; Wei, Y.; Jiao, R. Unravelling the functional diversity of the soil microbial community of Chinese fir plantations of different densities. Forests 2018, 9, 532. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, T.; Guo, J.; Tan, Z.; Dong, W.; Wang, H. Changes in the understory diversity of secondary Pinus tabulaeformis forests are the result of stand density and soil properties. Glob. Ecol. Conserv. 2021, 28, e01628. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Edwards, D.P.; Mendes, L.W.; Kim, M.; Dong, K.; Kim, H.; Adams, J.M. The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol. Ecol. 2016, 25, 2244–2257. [Google Scholar] [CrossRef]
- Settineri, G.; Mallamaci, C.; Mitrović, M.; Sidari, M.; Muscolo, A. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy. Eur. J. For. Res. 2018, 137, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.M.; Cao, Y. Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area of the Loess Plateau, China. Ecol. Eng. 2014, 73, 238–245. [Google Scholar] [CrossRef]
- Ding, X.; Xiao, J.H.; Li, L.; Conran, J.G.; Li, J. Congruent species delimitation of two controversial gold-thread nanmu tree species based on morphological and restriction site-associated DNA sequencing data. J. Syst. Evol. 2019, 57, 234–246. [Google Scholar] [CrossRef]
- Xiao, J.-H.; Ding, X.; Li, L.; Ma, H.; Ci, X.-Q.; van der Merwe, M.; Conran, J.G.; Li, J. Miocene diversification of a golden-thread nanmu tree species (Phoebe zhennan, Lauraceae) around the Sichuan Basin shaped by the East Asian monsoon. Ecol. Evol. 2020, 10, 10543–10557. [Google Scholar] [CrossRef]
- Zhu, Y.; An, W.; Peng, J.; Li, J.; Gu, Y.; Jiang, B.; Chen, L.; Zhu, P.; Yang, H. Genetic diversity of nanmu (Phoebe zhennan S. Lee. et F. N. Wei) breeding population and extraction of core collection using nSSR, cpSSR and phenotypic markers. Forests 2022, 13, 1320. [Google Scholar] [CrossRef]
- Yang, H.; An, W.; Gu, Y.; Peng, J.; Jiang, Y.; Li, J.; Chen, L.; Zhu, P.; He, F.; Zhang, F.; et al. Integrative metabolomic and transcriptomic analysis reveals the mechanism of specific color formation in Phoebe zhennan heartwood. Int. J. Mol. Sci. 2022, 23, 13569. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.-M.; Christenson, L.M.; Wang, F.-C.; Zeng, J.-P.; Chen, F.-S. Pine caterpillar outbreak and stand density impacts on nitrogen and phosphorus dynamics and their stoichiometry in Masson pine (Pinus massoniana) plantations in subtropical China. Can. J. For. Res. 2016, 46, 601–609. [Google Scholar] [CrossRef]
- Wilson, D.S.; Puettmann, K.J. Density management and biodiversity in young Douglas-fir forests: Challenges of managing across scales. For. Ecol. Manag. 2007, 246, 123–134. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, C.; Zhou, Z. Impacts of forest thinning on soil microbial community structure and extracellular enzyme activities: A global meta-analysis. Soil Biol. Biochem. 2020, 149, 107915. [Google Scholar] [CrossRef]
- Lu, C.; Feng, Y.; Huang, Y. Sample stem analysis and its applycation in construction of volume table. For. Resour. Manag. 2004, 6, 31–35. [Google Scholar]
- Zhang, Y.; Li, Z.; Hou, L.; Song, L.; Yang, H.; Sun, Q. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation. Acta Pedol. Sin. 2020, 57, 239–250. [Google Scholar]
- Fang, J.; Wang, X.; Shen, Z.; Tang, Z.; He, J.; Yu, D.; Jiang, Y.; Wang, Z.; Zheng, C.; Zhu, J.; et al. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar]
- Magurran, A. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Lu, R. Analtical Methods of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Soergel, D.A.W.; Dey, N.; Knight, R.; Brenner, S.E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012, 6, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.Y.C.; Mei, R.; Wu, Z.; Lee, P.K.H.; Liu, W.-T.; Lee, P.-H. Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing. Water Res. 2020, 178, 115815. [Google Scholar] [CrossRef]
- Schloss Patrick, D.; Westcott Sarah, L.; Ryabin, T.; Hall Justine, R.; Hartmann, M.; Hollister Emily, B.; Lesniewski Ryan, A.; Oakley Brian, B.; Parks Donovan, H.; Robinson Courtney, J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey Laura, W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D. vegan: Community Ecology Package. R Package Version 2.4-1. 2016. Available online: https://CARAN.R-project.org/package=vegan (accessed on 12 October 2022).
- Will, R.E.; Narahari, N.V.; Shiver, B.D.; Teskey, R.O. Effects of planting density on canopy dynamics and stem growth for intensively managed loblolly pine stands. For. Ecol. Manag. 2005, 205, 29–41. [Google Scholar] [CrossRef]
- Rodríguez-Loinaz, G.; Onaindia, M.; Amezaga, I.; Mijangos, I.; Garbisu, C. Relationship between vegetation diversity and soil functional diversity in native mixed oak forests. Soil Biol. Biochem. 2008, 40, 49–60. [Google Scholar] [CrossRef]
- Lei, J.; Du, H.; Duan, A.; Zhang, J. Effect of stand density and soil layer on soil nutrients of a 37-year-old Cunninghamia lanceolata plantation in naxi, Sichuan Province, China. Sustainability 2019, 11, 5410. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, J.H.; Ross, F.C.; Wang, H.F. Variation of soil bacterial communities in a chronosequence of Rubber tree (Hevea brasiliensis) plantations. Front. Plant Sci. 2017, 8, 849. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, R.; Swinfield, T.; Gallery, R.E.; Lewis, O.T.; Gripenberg, S.; Narayan, L.; Freckleton, R.P. Testing the Janzen-Connell mechanism: Pathogens cause overcompensating density dependence in a tropical tree. Ecol. Lett. 2010, 13, 1262–1269. [Google Scholar] [CrossRef]
- Otsing, E.; Barantal, S.; Anslan, S.; Koricheva, J.; Tedersoo, L. Litter species richness and composition effects on fungal richness and community structure in decomposing foliar and root litter. Soil Biol. Biochem. 2018, 125, 328–339. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Bardgett, R.D.; Vitousek, P.M.; Maestre, F.T.; Williams, M.A.; Eldridge, D.J.; Lambers, H.; Neuhauser, S.; Gallardo, A.; García-Velázquez, L.; et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl. Acad. Sci. USA 2019, 116, 6891–6896. [Google Scholar] [CrossRef] [Green Version]
- Miki, T. Microbe-mediated plant–soil feedback and its roles in a changing world. Ecol. Res. 2012, 27, 509–520. [Google Scholar] [CrossRef]
- Miki, T.; Ushio, M.; Fukui, S.; Kondoh, M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proc. Natl. Acad. Sci. USA 2010, 107, 14251–14256. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Venturini, A.M.; Meyer, K.M.; Klein, A.M.; Tiedje, J.M.; Bohannan, B.J.M.; Nusslein, K.; Tsai, S.M.; Rodrigues, J.L.M. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front. Mcrobiol. 2015, 6, 1443. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Ward Naomi, L.; Challacombe Jean, F.; Janssen Peter, H.; Henrissat, B.; Coutinho Pedro, M.; Wu, M.; Xie, G.; Haft Daniel, H.; Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eo, J.; Kim, M.-H.; Kim, M.-K.; Choi, S.-K. Shift of dominant species in plant community and soil chemical properties shape soil bacterial community characteristics and putative functions: A case study on topographic variation in a mountain pasture. Microorganisms 2021, 9, 961. [Google Scholar] [CrossRef] [PubMed]
Number | Stand Density (stems/hm2) | H (m) | DBH (cm) | P (m) | V (m3) | Altitude (m) | Aspect and Slope |
---|---|---|---|---|---|---|---|
D1 | 400 | 7.4 ± 0.2 | 12.4 ± 0.6 | 3.4 ± 0.4 | 0.050 ± 0.005 | 490 | S 8° |
D2 | 500 | 7.4 ± 0.2 | 12.4 ± 0.0 | 3.4 ± 0.1 | 0.051 ± 0.002 | 492 | S 9° |
D3 | 600 | 7.8 ± 0.3 | 12.8 ± 0.9 | 3.5 ± 0.3 | 0.056 ± 0.009 | 493 | S 8° |
D4 | 700 | 7.4 ± 0.1 | 12.5 ± 0.6 | 3.3 ± 0.2 | 0.051 ± 0.004 | 505 | S 8° |
D5 | 850 | 7.5 ± 0.1 | 12.0 ± 0.7 | 3.1 ± 0.2 | 0.048 ± 0.006 | 510 | S 9° |
Stand Densities | Herb Layer | Shrub Layer | ||||||
---|---|---|---|---|---|---|---|---|
H′ | Jsw | D | DMG | H′ | Jsw | D | DMG | |
D1 | 1.86 ± 0.14 | 0.69 ± 0.05 | 0.25 ± 0.04 | 2.32 ± 0.26 | 1.00 ± 0.47 | 0.87 ± 0.08 a | 0.44 ± 0.18 b | 1.12 ± 0.69 |
D2 | 2.02 ± 0.26 | 0.74 ± 0.09 | 0.21 ± 0.09 | 2.58 ± 0.36 | 0.59 ± 0.61 | 0.47 ± 0.44 ab | 0.67 ± 0.34 ab | 0.52 ± 0.48 |
D3 | 1.93 ± 0.17 | 0.75 ± 0.08 | 0.22 ± 0.06 | 2.20 ± 0.58 | 0.16 ± 0.28 | 0.15 ± 0.25 b | 0.92 ± 0.14 a | 0.25 ± 0.43 |
D4 | 1.76 ± 0.25 | 0.67 ± 0.12 | 0.24 ± 0.06 | 2.24 ± 0.38 | 1.22 ± 0.26 | 0.89 ± 0.06 a | 0.34 ± 0.10 b | 1.30 ± 0.52 |
D5 | 1.38 ± 0.34 | 0.51 ± 0.11 | 0.40 ± 0.15 | 2.39 ± 0.18 | 1.29 ± 0.18 | 0.78 ± 0.05 a | 0.37 ± 0.05 b | 1.41 ± 0.39 |
F value | 3.146 | 3.387 | 2.535 | 0.481 | 3.400 | 5.517 | 4.103 | 2.808 |
p value | 0.064 | 0.054 | 0.106 | 0.749 | 0.053 | 0.013 | 0.032 | 0.085 |
Stand Densities | pH | SBD (g/cm3) | SM (%) | TN (g/kg) | TP (mg/kg) | AP (mg/kg) | SOC (g/kg) | ||
---|---|---|---|---|---|---|---|---|---|
D1 | 5.49 ± 0.48 | 1.76 ± 0.15 | 0.17 ± 0.00 | 11.63 ± 1.65 a | 6.38 ± 1.03 b | 8.45 ± 0.61 b | 0.37 ± 0.02 | 2.13 ± 0.59 | 23.73 ± 3.86 a |
D2 | 5.31 ± 0.13 | 1.77 ± 0.07 | 0.17 ± 0.03 | 9.31 ± 0.27 b | 6.70 ± 0.80 b | 8.36 ± 0.48 b | 0.30 ± 0.02 | 2.01 ± 0.25 | 21.26 ± 1.00 a |
D3 | 5.26 ± 0.51 | 1.72 ± 0.18 | 0.15 ± 0.04 | 11.44 ± 1.28 a | 3.63 ± 0.77 c | 11.31 ± 0.84 a | 0.30 ± 0.10 | 2.36 ± 0.89 | 23.53 ± 3.22 a |
D4 | 5.85 ± 0.12 | 1.83 ± 0.08 | 0.17 ± 0.02 | 9.43 ± 0.71 b | 6.50 ± 0.76 b | 7.16 ± 0.21 b | 0.25 ± 0.05 | 1.79 ± 0.17 | 16.25 ± 1.89 b |
D5 | 5.08 ± 0.29 | 1.76 ± 0.14 | 0.18 ± 0.02 | 6.23 ± 0.36 c | 9.67 ± 0.10 a | 12.84 ± 1.67 a | 0.30 ± 0.11 | 2.76 ± 0.21 | 20.27 ± 2.43 ab |
F value | 2.149 | 0.264 | 0.535 | 14.060 | 23.700 | 20.120 | 1.015 | 1.584 | 3.969 |
p value | 0.149 | 0.894 | 0.713 | 0.000 | 0.000 | 0.000 | 0.445 | 0.253 | 0.035 |
Stand Densities | ACE | Chao1 | Simpson | Shannon | Coverage |
---|---|---|---|---|---|
D1 | 1234.57 ± 85.04 | 1244.27 ± 86.37 | 0.99 ± 0.00 | 8.44 ± 0.12 | 0.97 ± 0.00 |
D2 | 1357.93 ± 86.65 | 1345.38 ± 92.84 | 0.99 ± 0.00 | 8.52 ± 0.10 | 0.97 ± 0.00 |
D3 | 1234.59 ± 177.42 | 1238.40 ± 172.10 | 0.99 ± 0.00 | 8.52 ± 0.27 | 0.97 ± 0.01 |
D4 | 1365.42 ± 54.39 | 1355.03 ± 56.33 | 0.99 ± 0.00 | 8.58 ± 0.14 | 0.97 ± 0.00 |
D5 | 1141.21 ± 55.34 | 1135.91 ± 47.42 | 0.99 ± 0.00 | 8.27 ± 0.09 | 0.98 ± 0.00 |
F value | 2.576 | 2.374 | 0.916 | 1.795 | 1.469 |
p value | 0.103 | 0.122 | 0.492 | 0.206 | 0.283 |
Phylum | Class | Order | Family | Genus | D1 | D2 | D3 | D4 | D5 | F Value | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Verrucomicrobia | Verrucomicrobiae | Chthoniobacterales | Chthoniobacteraceae | Candidatus_Udaeobacter | 23.87 | 27.48 | 19.68 | 25.66 | 20.42 | 1.074 | 0.419 |
Pedosphaerales | Pedosphaeraceae | ADurb.Bin063_1 | 7.00 | 6.49 | 6.15 | 5.83 | 5.07 | 0.868 | 0.516 | ||
Chthoniobacterales | Xiphinematobacteraceae | Candidatus_Xiphinematobacter | 1.04 | 2.03 | 1.58 | 2.07 | 6.28 | 3.930 | 0.036 | ||
Proteobacteria | Alphaproteobacteria | Rhizobiales | Xanthobacteraceae | Bradyrhizobium | 4.99 | 4.59 | 6.11 | 5.62 | 5.59 | 0.329 | 0.852 |
Pseudolabrys | 2.81 | 2.28 | 2.01 | 2.51 | 1.68 | 1.101 | 0.408 | ||||
Sphingomonadales | Sphingomonadaceae | Sphingomonas | 3.52 | 2.87 | 3.27 | 3.47 | 1.78 | 2.825 | 0.083 | ||
Reyranellales | Reyranellaceae | Reyranella | 1.22 | 1.08 | 0.85 | 0.85 | 1.27 | 1.094 | 0.411 | ||
Gammaproteobacteria | Burkholderiales | Burkholderiaceae | Paraburkholderia | 1.41 | 1.47 | 1.59 | 1.68 | 3.62 | 2.460 | 0.113 | |
Betaproteobacteriales | Nitrosomonadaceae | Ellin6067 | 1.76 | 2.25 | 1.18 | 1.88 | 1.25 | 2.896 | 0.079 | ||
Xanthomonadales | Rhodanobacteraceae | Rhodanobacter | 1.07 | 1.18 | 1.45 | 1.32 | 1.55 | 0.492 | 0.742 | ||
Deltaproteobacteria | Myxococcales | Haliangiaceae | Haliangium | 1.46 | 1.47 | 1.53 | 1.56 | 0.79 | 2.047 | 0.163 | |
Acidobacteria | Blastocatellia_Subgroup_4 | Pyrinomonadales | Pyrinomonadaceae | RB41 | 2.96 | 2.84 | 3.64 | 6.96 | 0.60 | 2.446 | 0.115 |
Acidobacteriia | Acidobacteriales | Acidobacteriaceae_Subgroup_1 | Occallatibacter | 2.37 | 2.36 | 3.21 | 1.18 | 4.86 | 2.139 | 0.150 | |
Edaphobacter | 1.81 | 1.54 | 1.76 | 1.07 | 3.05 | 1.958 | 0.177 | ||||
Koribacteraceae | Candidatus_Koribacter | 2.16 | 1.54 | 2.13 | 1.22 | 2.67 | 1.108 | 0.405 | |||
Solibacterales | Solibacteraceae_Subgroup_3 | Bryobacter | 2.42 | 2.35 | 3.15 | 2.47 | 2.89 | 0.535 | 0.713 | ||
Candidatus_Solibacter | 8.87 | 7.44 | 9.55 | 7.55 | 9.54 | 0.283 | 0.882 | ||||
Nitrospirota | Nitrospiria | Nitrospirales | Nitrospiraceae | Nitrospira | 1.31 | 1.43 | 2.12 | 2.20 | 0.99 | 1.446 | 0.289 |
Bacteroidetes | Bacteroidia | Flavobacteriales | Flavobacteriaceae | Flavobacterium | 1.02 | 2.22 | 1.71 | 1.27 | 0.94 | 2.152 | 0.149 |
Gemmatimonadetes | Gemmatimonadetes | Gemmatimonadales | Gemmatimonadaceae | Gemmatimonas | 1.31 | 1.01 | 1.52 | 0.93 | 1.24 | 0.502 | 0.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Peng, J.; Gu, Y.; Guo, H.; Jiang, T.; Yang, H. The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe zhennan Plantations. Forests 2023, 14, 1612. https://doi.org/10.3390/f14081612
Cheng Y, Peng J, Gu Y, Guo H, Jiang T, Yang H. The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe zhennan Plantations. Forests. 2023; 14(8):1612. https://doi.org/10.3390/f14081612
Chicago/Turabian StyleCheng, Yilun, Jian Peng, Yunjie Gu, Hongying Guo, Tianyi Jiang, and Hanbo Yang. 2023. "The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe zhennan Plantations" Forests 14, no. 8: 1612. https://doi.org/10.3390/f14081612
APA StyleCheng, Y., Peng, J., Gu, Y., Guo, H., Jiang, T., & Yang, H. (2023). The Early Effect of Plant Density on Soil Physicochemical Attributes and Bacterial and Understory Plant Diversity in Phoebe zhennan Plantations. Forests, 14(8), 1612. https://doi.org/10.3390/f14081612