Approaches to Forest Site Classification as an Indicator of Teak Volume Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Silvicultural Practices
2.2. Forest Inventory
2.3. Modeling the Production Capacity
Model No. | Base Model | Parameters Related to the Target Variable X | Initial Solution for X with Y0 and t0 | Dynamic Equation |
---|---|---|---|---|
M1 | Lundqvist–Korf | |||
M2 | Chapman–Richards | |||
M3 | Hossfeld | |||
M4 | Lundqvist–Korf | With, | ||
M5 | Cieszewski | |||
M6 | Schumacher |
2.4. Model Selection and Validation
2.5. Hierarchical Cluster Analysis
3. Results
3.1. Modeling of Production Capacity
3.2. Relationship between Site Index and Volume Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Midgley, S.; Somaiya, R.T.; Stevens, P.R.; Brown, A.; Kien, N.D.; Laity, R. Planted teak: Global production and markets, with reference to Solomon Islands. Aust. Cent. Int. Agric. Res. 2015, 85, 92. [Google Scholar]
- Kollert, W.; Kleine, M. IUFRO World Series Volume 36 The Global Teak Study; IUFRO: Vienna, Austria, 2017; ISBN 9783902762771. [Google Scholar]
- Midgley, S.; Mounlamai, K.; Flanagan, A.; Phengsopha, K. Global Markets for Plantation Teak; Implications for Growers in Lao PDR. Valtip 2015, 2, 74. [Google Scholar]
- Indústria Brasileira de Árvores. Brazilian Tree Industry Annual Report—Base Year 2020; Indústria Brasileira de Árvores: São Paulo, Brazil, 2021; Volume 21, pp. 1–176. [Google Scholar]
- Maisuria, H.J.; Dhaduk, H.L.; Kumar, S.; Sakure, A.A.; Thounaojam, A.S. Teak population structure and genetic diversity in Gujarat, India. Curr. Plant Biol. 2022, 32, 100267. [Google Scholar] [CrossRef]
- Kusbach, A.; Šebesta, J.; Meason, D.F.; Mikita, T.; Meyrat, A.M.C.; Janata, P.; Maděra, P.; Hybler, V.; Smola, M. Site-specific approach to growth assessment and cultivation of teak (Tectona grandis) in Nicaraguan dry tropics. For. Ecol. Manag. 2021, 480, 118658. [Google Scholar] [CrossRef]
- Tewari, V.; Álvarez-gonzález, J.; García, O. Developing a dynamic growth model for teak plantations in India. For. Ecosyst. 2014, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Kenzo, T.; Himmapan, W.; Yoneda, R.; Tedsorn, N.; Vacharangkura, T.; Hitsuma, G.; Noda, I. General estimation models for above- and below-ground biomass of teak (Tectona grandis) plantations in Thailand. For. Ecol. Manag. 2020, 457, 117701. [Google Scholar] [CrossRef]
- Koirala, A.; Montes, C.R.; Bullock, B.P.; Wagle, B.H. Developing taper equations for planted teak (Tectona grandis L.f.) trees of central lowland Nepal. Trees For. People 2021, 5, 100103. [Google Scholar] [CrossRef]
- Mulyadiana, A.; Trikoesoemaningtyas; Siregar, I.Z. Evaluation of early growth performance of 41 clones of teak (Tectona grandis Linn. f.) at four microsites in Purwakarta, Indonesia. J. For. Res. 2020, 31, 901–907. [Google Scholar] [CrossRef]
- Vendruscolo, D.G.S.; Drescher, R.; de Pádua Chaves e Carvalho, S.; Medeiros, R.A.; Môra, R.; Soares, A.A.V. Dominant height growth in tectona grandis plantations in Mato Grosso, Brazil. Floresta Ambient 2019, 26, 1–10. [Google Scholar] [CrossRef]
- Souza, H.J.d.; Miguel, E.P.; Nascimento, R.G.M.; Cabacinha, C.D.; Rezende, A.V.; dos Santos, M.L. Thinning-response modifier term in growth models: An application on clonal Tectona grandis Linn F. stands at the amazonian region. For. Ecol. Manag. 2022, 511, 120109. [Google Scholar] [CrossRef]
- Clutter, J.; Fortson, J.; Pienaar, L.; Brister, G.; Bailey, R. Timber Management: A Quantitative Approach; Hrsg, I., Ed.; John Wiley & Sons: New York, NY, USA; London, UK, 1983; ISBN 0471029610. [Google Scholar]
- Filho, A.M.; Netto, S.P.; Machado, S.A.; Corte, A.P.D.; Behling, A. Site classification for Eucalyptus sp. in a tropical region of Brazil. An. Acad. Bras. Cienc. 2023, 95, e20200038. [Google Scholar] [CrossRef] [PubMed]
- Carrijo, J.V.N.; de Ferreira, A.B.F.; Ferreira, M.C.; de Aguiar, M.C.; Miguel, E.P.; Matricardi, E.A.T.; Rezende, A.V. The growth and production modeling of individual trees of Eucalyptus urophylla plantations. J. For. Res. 2020, 31, 1663–1672. [Google Scholar] [CrossRef]
- de Miranda, R.O.V.; Figueiredo Filho, A.; Costa, E.A.; Fiorentin, L.D.; Kohler, S.V.; Ebling, Â.A. Métodos da curva guia e equação das diferenças na classificação de sítio e sua relação na descrição da altura em Pinus taeda L. Sci. For. 2021, 49, 1–12. [Google Scholar] [CrossRef]
- Ribeiro, A.; Ferraz Filho, A.C.; Tomé, M.; Scolforo, J.R.S. Site quality curves for african mahogany plantations in brazil. Cerne 2016, 22, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.G.S.; Drescher, R.; Caldeira, S.F.; Martinez, D.T.; Vendruscolo, D.G.S. Productive capacity of Tectona grandis L.f in Southwestern Mato Grosso State, Brazil. Sci. For. Sci. 2016, 44, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cieszewski, C.J.; Bella, I.E. Polymorphic height and site index curves for lodgepole pine in Alberta. Can. J. For. Res. 1989, 19, 1151–1160. [Google Scholar] [CrossRef]
- Salekin, S.; Mason, E.G.; Morgenroth, J.; Meason, D.F. A preliminary growth and yield model for eucalyptus globoidea blakely plantations in New Zealand. N. Z. J. For. Sci. 2020, 50, 1–15. [Google Scholar] [CrossRef]
- Jordan, L.; Souter, R.; Parresol, B.; Daniels, R.F. Application of the Algebraic Difference Approach for Developing Self-Referencing Specific Gravity and Biomass Equations. For. Sci. 2006, 52, 81–92. [Google Scholar]
- Cieszewski, C.J.; Strub, M. Generalized algebraic difference approach derivation of dynamic site equations with polymorphism and variable asymptotes from exponential and logarithmic functions. For. Sci. 2008, 54, 303–315. [Google Scholar] [CrossRef]
- Cieszewski, C.J.; Bailey, R.L. Generalized Algebraic Difference Approach: Theory Based Derivation of Dynamic Site Equations with Polymorphism and Variable Asymptotes. For. Sci. 2000, 46, 116–126. [Google Scholar] [CrossRef]
- Sharma, R.P.; Brunner, A.; Eid, T.; Øyen, B.-H. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. For. Ecol. Manag. 2011, 262, 2162–2175. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; Miguel, E.P.; Dos Santos, C.R.C.; De Souza, H.J.; Martins, W.B.R.; Lima, M.D.R.; Arce, J.E.; Silva, J.N.M. Forecasting production in thinned clonal stands of Tectona grandis in Eastern Amazonia. For. Syst. 2022, 31, e024. [Google Scholar] [CrossRef]
- Kimberley, M.O.; Watt, M.S. A novel approach to modelling stand-level growth of an even-aged forest using a volume productivity index with application to new zealand-grown coast redwood. Forests 2021, 12, 1155. [Google Scholar] [CrossRef]
- IBGE. Technical Manual of the Brazilian Vegetation; IBGE: Rio de Janeiro, Brazil, 2012.
- EMBRAPA. Sistema Brasileiro de Classificação de Solos: 5a Edição 2018; EMBRAPA: Brasilia, Brazil, 2018. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- INMET. National Institute of Meteorology. Meteorological Data. Available online: https://portal.inmet.gov.br/dadoshistoricos. (accessed on 3 February 2023).
- HAGLÖF SWEDEN AB. Vertex IV and Transponder T3 Manual; HAGLÖF SWEDEN AB: Långsele, Sweden, 2007; pp. 1–27. [Google Scholar]
- Assmann, E. The Principles of Forest Yield Study: Studies in the Organic Production, Structure, Increment and Yield of Forest Stands; Hrsg.: Pergamon, Turkey, 1970. [Google Scholar]
- Takata, K. Construction of universal diameter-height-curves. J. Jpn. For. Soc. Tóquio 1958, 40, 1–6. [Google Scholar]
- Kiviste, A.; Kiviste, K. Algebraic difference equations for stand height, diameter, and volume depending on stand age and site factors for Estonian state forests. Math. Comput. For. Nat. Sci. 2009, 1, 67–77. [Google Scholar]
- Palahí, M.; Tomé, M.; Pukkala, T.; Trasobares, A.; Montero, G. Site index model for Pinus sylvestris in north-east Spain. For. Ecol. Manag. 2004, 187, 35–47. [Google Scholar] [CrossRef]
- Tahar, S.; Marc, P.; Salah, G.; Antonio, B.J.; Youssef, A.; Miriam, P. Modeling Dominant Height Growth in Planted Pinus pinea Stands in Northwest of Tunisia. Int. J. For. Res. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.C.C.; Leite, H.G. Mensuração Florestal: Perguntas e Respostas; 5. Aufl.; UFV: Viçosa, Brazil, 2017; ISBN 9788572695794. [Google Scholar]
- Cieszewski, C.J. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Can. J. For. Res. 2001, 31, 165–173. [Google Scholar] [CrossRef]
- Aguirre, A.; Moreno-Fernández, D.; Alberdi, I.; Hernández, L.; Adame, P.; Cañellas, I.; Montes, F. Mapping forest site quality at national level. For. Ecol. Manag. 2022, 508, 120043. [Google Scholar] [CrossRef]
- Akaike, H. On the likelihood of a time series model. J. R. Stat. Soc. 1978, 27, 217–235. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing: R Foundation for Statistical Computing 2021; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Gregoire, T.G.; Schabenberger, O.; Barrett, J.P. Linear modelling of irregularity spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 1995, 25, 137–156. [Google Scholar] [CrossRef]
- García, O.; Burkhart, H.E.; Amateis, R.L. A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA. For. Ecol. Manag. 2011, 262, 2035–2041. [Google Scholar] [CrossRef]
- Robinson, A.P.; Duursma, R.A.; Marshall, J.D. A regression-based equivalence test for model validation: Shifting the burden of proof. Tree Physiol. 2005, 25, 903–913. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Forest Growth and Yield Modeling; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 9781119998518. [Google Scholar]
- Galili, T. Extending ’dendrogram’ Functionality in R. Package ‘Dendextend’. Available online: https://cran.r-project.org/web/packages/dendextend/index.html (accessed on 25 April 2023).
- Ziech, B.G.; de Moraes, V.S.; Drescher, R.; Vendruscolo, D.G.S. Models of growth in dominant height and site index for teak in Glória D’Oeste-MT. Rev. Bras. Biom. 2016, 34, 533–542. [Google Scholar]
- Cañadas-L, Á.; Andrade-Candell, J.; Domínguez-A, J.; Molina-H, C.; Schnabel-D, O.; Vargas-Hernández, J.; Wehenkel, C. Growth and Yield Models for Teak Planted as Living Fences in Coastal Ecuador. Forests 2018, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Cuevas, M.; Santiago-García, W.; De Los Santos-Posadas, H.M.; Martínez-Antúnez, P.; Ruiz-Aquino, F. Models of dominant height growth and site indexes for Pinus ayacahuite Ehren. Agrociencia 2018, 52, 437–452. [Google Scholar]
- Corral Rivas, J.J.; Álvarez González, J.G.; Ruíz González, A.D.; Von Gadow, K. Compatible height and site index models for five pine species in El Salto, Durango (Mexico). For. Ecol. Manag. 2004, 201, 145–160. [Google Scholar] [CrossRef]
- Scolforo, J.R.S. Biometria Florestal: Modelos de Crescimento e Produção Florestal; UFLA/FAEPE: Lavras, Brazil, 2006. [Google Scholar]
- Fernandes, L.I.; Lima, A.P.L.; Lima, S.F.; Corrêa, R.P.; Queiroz, A.L.S. Biomassa e nutrientes no tronco de clones de eucalipto em plantio de curta rotação. Braz. Appl. Sci. Rev. 2019, 3, 1987–2004. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.D.R.; Barros, U.O.; Barbosa, M.A.M.; Segura, F.R.; Silva, F.F.; Batista, B.L.; Lobato, A.K.d.S. Silicon mitigates oxidative stress and has positive Effects in Eucalyptus platyphylla under aluminium toxicity. Plant Soil Environ. 2016, 62, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.F.F.; Lima, M.D.R.; Lima, E.J.A.; Castro, A.R.S.; Barros Junior, U.O.; Lobato, A.K.S. Differential behaviours in two species of Eucalyptus exposed to aluminium. Indian J. Plant Physiol. 2017, 22, 107–113. [Google Scholar] [CrossRef]
- dos Santos, M.L.; Miguel, E.P.; Silva, J.N.M.; dos Santos, C.R.C.; Lima, M.D.R.; Costa, B.C.; Costa, L.R.R.; Martins, W.B.R.; Raddatz, D.D.; da Rosa, R.C. Spatial variability of the productive capacity of teak (Tectona grandis Linn F.) plantations in the eastern Amazonia. Aust. J. Crop Sci. 2022, 16, 1193–1202. [Google Scholar] [CrossRef]
Variables | Fit Data | Validation Data | ||||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | |
t | 1.00 | 12.00 | 5.31 | 2.65 | 1.00 | 12.00 | 5.68 | 2.51 |
Dh | 3.14 | 21.18 | 13.84 | 3.49 | 5.22 | 20.31 | 14.34 | 2.95 |
Plots | 1.0 | 46.0 | 23.5 | 13.42 | 1.0 | 12.0 | 6.5 | 3.61 |
n | 1.0 | 427.0 | 214 | 123.41 | 1.0 | 107.0 | 54.0 | 31.03 |
V | 68.35 | 227.53 | 158.84 | 31.23 | - | - | - | - |
dbh | 17.51 | 24.44 | 20.93 | 2.04 | - | - | - | - |
Model No. | Parameters | Standard Error of the Parameters | RMSE | RMSPE | AIC | |
---|---|---|---|---|---|---|
M1 | b1 = 24.958604 | 1.2115007 | 0.9678 | 0.6683 | 4.5251 | 875.63 |
b3 = 0.605413 | 0.0382228 | |||||
M2 | b1 = 0.0232586 | 0.00201532 | 0.9596 | 0.7687 | 5.2047 | 995.12 |
b2 = 0.7577856 | 0.03424046 | |||||
M3 | b1 = 20.870433 | 0.5513357 | 0.9678 | 0.6676 | 4.5199 | 874.65 |
b3 = 1.102182 | 0.0416282 | |||||
M4 | b1 = −42,437.13 | 4286.562 | 0.9677 | 0.6684 | 4.5254 | 877.67 |
b2 = 136,544.68 | 14,206.718 | |||||
b3 = 0.6054006 | 0.035 | |||||
M5 | b1 = 10.707307 | 3.184992 | 0.9648 | 0.7029 | 4.7595 | 920.76 |
b2 = 5.031924 | 0.507783 | |||||
b3 = 0.751607 | 0.026144 | |||||
M6 | b1 = −4.44418 | 0.08000048 | 0.9589 | 0.8324 | 5.6363 | 1059.93 |
Model No. | Parameters | Confidence Interval | Similarity Region | Dissimilarity |
---|---|---|---|---|
M1 | Intercept | 14.34 ± 14.84 | 14.48 ± 14.78 | Reject |
slope | 0.75 ± 1.25 | 0.95 ± 1.07 | Reject | |
M2 | Intercept | 14.33 ± 14.83 | 14.46 ± 14.79 | Reject |
slope | 0.75 ± 1.25 | 0.90 ± 1.04 | Reject | |
M3 | Intercept | 14.35 ± 14.85 | 14.47 ± 14.78 | Reject |
slope | 0.75 ± 1.25 | 0.96 ± 1.07 | Reject | |
M4 | Intercept | 14.34 ± 14.84 | 14.47 ± 14.79 | Reject |
slope | 0.75 ± 1.25 | 0.96 ± 1.08 | Reject | |
M5 | Intercept | 14.31 ± 14.81 | 14.47 ± 14.79 | Reject |
slope | 0.75 ± 1.25 | 0.95 ± 1.08 | Reject | |
M6 | Intercept | 14.14 ± 14.64 | 14.44 ± 14.81 | Do not reject |
slope | 0.75 ± 1.25 | 0.89 ± 1.06 | Reject |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.L.d.; Miguel, E.P.; Nappo, M.E.; Souza, H.J.d.; Santos, C.R.C.d.; Silva, J.N.M.; Matricardi, E.A.T. Approaches to Forest Site Classification as an Indicator of Teak Volume Production. Forests 2023, 14, 1613. https://doi.org/10.3390/f14081613
Santos MLd, Miguel EP, Nappo ME, Souza HJd, Santos CRCd, Silva JNM, Matricardi EAT. Approaches to Forest Site Classification as an Indicator of Teak Volume Production. Forests. 2023; 14(8):1613. https://doi.org/10.3390/f14081613
Chicago/Turabian StyleSantos, Mario Lima dos, Eder Pereira Miguel, Mauro Eloi Nappo, Hallefy Junio de Souza, Cassio Rafael Costa dos Santos, José Natalino Macedo Silva, and Eraldo Aparecido Trondoli Matricardi. 2023. "Approaches to Forest Site Classification as an Indicator of Teak Volume Production" Forests 14, no. 8: 1613. https://doi.org/10.3390/f14081613
APA StyleSantos, M. L. d., Miguel, E. P., Nappo, M. E., Souza, H. J. d., Santos, C. R. C. d., Silva, J. N. M., & Matricardi, E. A. T. (2023). Approaches to Forest Site Classification as an Indicator of Teak Volume Production. Forests, 14(8), 1613. https://doi.org/10.3390/f14081613