Machine Grading of High-Density Hardwoods (Southern Blue Gum) from Tensile Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Non-Destructive Characterization
2.3. Tensile Tests
3. Results and Discussion
3.1. Mechanical Properties
3.2. Adjustement Factors and Characteristic Values
3.3. Definition of Tensile Strength Classes for Hardwoods: Southern Blue Gum (ET)
3.4. Strength Class Combinations for the Whole Sample
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MITECO. Anuario de Estadística Forestal 2019; MITECO: Madrid, Spain, 2021. (In Spanish)
- ICNF. IFN6—Áreas dos Usos do Solo e das Espécies Florestais de Portugal Continental em 1995, 2005 e 2010; ICNF: Lisboa, Portugal, 2019; p. 34. (In Portuguese)
- Cesaroli, S.; Caldeira, M.C.; Pereira, J.S.; Caudullo, G.; de Rigo, D. Eucalyptus globulus and other eucalypts in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; EU: Luxembourg, 2016. [Google Scholar]
- FAO; UNECE. Circularity Concepts in Forest-Based Industries. In ECE/TIM/SP/49-Forestry and Timber Section; United Nations and the Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- EU. Regulation No. 305/2011—Construction Products, of 9 March 2011 Laying down Harmonised Condition for the Marketing of Construction Products and Repealing; 89/106/EEC; Official Journal of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. New Proposals to Make Sustainable Products the Norm and Boost Europe’s Resource Independence; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Nepal, P.; Johnston, C.M.T.; Ganguly, I. Effects on Global Forests and Wood Product Markets of Increased Demand for Mass Timber. Sustainability 2021, 13, 13943. [Google Scholar] [CrossRef]
- Baño, V.; Domenech, L.; Mazzey, C.; Vieillard, T. Hardwood glulam in complex structures: Design and construction of the MACA museum in Uruguay. In Proceedings of the WCTE—World Conference on Timber Engineering, Oslo, Norway, 19–22 June 2023. [Google Scholar]
- Touza Vásquez, M.C.; Pedras Saavedra, F. Una propuesta industrial de secado de madera de eucalipto blanco (Eucalyptus globulus) de Galicia. In CIS-Madera; Centro de Innovación y Servicios Tecnológicos de la Madera: Orense, Spain, 2002. [Google Scholar]
- Franke, S.; Marto, J. Investigation of Eucalyptus globulus wood for the use as an engineered material. In Proceedings of the WCTE 2014—World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Martiínez, J.A.; Martínez, C.; Camino, G.; Pérez, M.; Gómez, J.; González, A.; López, M.; Salvador, J.; Alonso, J.M.; Pardiñas, L.; et al. LIFE Lugo+Biodinámico. En la Vanguarda del Urbanismo Sostenible; ETSA—UPM: Madrid, Spain, 2022. [Google Scholar]
- UNE 56546; Clasificación Visual de la Madera Aserrada Para uso Estructural. Madera de Frondosas. AENOR: Madrid, Spain, 2022. (In Spanish)
- EN 1912; Structural Timber—Strength Classes—Assignement of Visual Grades and Species. European Committee for Standardization, CEN: Brussels, Belgium, 2013.
- M6—Common Eucalyptus; LNEC: Lisbon, Portugal, 1997. (In Portuguese)
- EN 338; Structural Timber—Strength Classes. CEN: Brussels, Belgium, 2016.
- Moltini, G.; Íñiguez-González, G.; Cabrera, G.; Baño, V. Evaluation of Yield Improvements in Machine vs. Visual Strength Grading for Softwood Species. Forests 2022, 13, 2021. [Google Scholar] [CrossRef]
- Bacher, M. Comparison of different machine strength grading principles. In Proceedings of the Conference COST E53, Delft, The Netherlands, 29–30 October 2008. [Google Scholar]
- Entsminger, E.D.; Brashaw, B.K.; Seale, R.D.; Ross, R.J. Machine Grading of Lumber Practical Concerns for Lumber Producers—FPL-GTR-279; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2020; p. 66. [Google Scholar]
- Ravenshorst, G.J.P. Species Independent Strength Grading of Structural Timber. In Civil Engineering and Geosciences; TU Delft: Delft, The Netherlands, 2015. [Google Scholar]
- Centre for Wood Science and Technology, TG1. CEN TC124 WG2 TG1—Machine Grading Settings and Visual Grading Assignments for EN 1912. Available online: https://blogs.napier.ac.uk/cwst/tg1/ (accessed on 16 June 2023).
- EN 14081; Timber Structures—Strength Graded Structural Timber with Rectangular cross Section—Part 2: Machine Grading; Additional Requirements for Type Testing. CEN: Brussels, Belgium, 2022.
- EN 14080; Timber Structures—Glued Laminated Timber and Glued Solid Timber—Requirements. CEN: Brussels, Belgium, 2013.
- Kovryga, A.; Stapel, P.; van de Kuilen, J.W. Tensile strength classes for hardwoods. In Proceedings of the International Network on Timber Engineering Research Proceedings, Graz, Austria, 16–19 August 2016; KIT Scientific Publishing: Graz, Austria, 2016. [Google Scholar]
- Kovryga, A.; Stapel, P.; vand de Kuilen, J. Mechanical properties and their interrelationships for medium-density European hardwoods, focusing on ash and beech. Wood Mater. Sci. Eng. 2020, 15, 289–302. [Google Scholar] [CrossRef]
- Ehrhart, T.; Fink, G.; Steiger, R.; Frangi, A. Experimental investigation of tensile strength and stiffness indicators regarding European beech timber. In Proceedings of the WCTE 2016—World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Plos, M.; Fortuna, B.; Suligoj, T.; Turk, G. From Visual Grading and Dynamic Modulus of European Beech (Fagus sylvatica) Logs to Tensile Strength of Boards. Forests 2022, 13, 77. [Google Scholar] [CrossRef]
- Kovryga, A.; Schlotzhauer, P.; Stapel, P.; Militz, H.; van de Kuilen, J. Visual and machine strength grading of European ash and maple for glulam application. Holzforschung 2019, 73, 773–787. [Google Scholar] [CrossRef]
- Moltini, G.; Baño, V.; Martins, C.; Dias, A.M.P.G. Grading Report No. TG1/2021/11/03_rev.3. Derivation of MTG Machine Settings of Southern Blue Gum from Spain and Portugal Tested in Tension According to EN14081-2:2018; Confidential Report to CEN TC124 WG2 TG1; CEN: Brussels, Belgium, 2022. [Google Scholar]
- Lopez-Suevos, F.; Richter, K. Hydroxymethylated Resorcinol (HMR) and Novolak-Based HMR (n-HMR) Primers to Enhance Bond Durability of Eucalyptus globulus Glulams. J. Adhes. Sci. Technol. 2009, 23, 1925–1937. [Google Scholar] [CrossRef]
- Majano-Majano, A.; Lara-Bocanegra, A.J.; Xavier, J.; Pereira, F.; Morais, J. Direct evaluation of mode I cohesive law of eucalyptus bonded joints. Procedia Struct. Integr. 2022, 37, 492–499. [Google Scholar] [CrossRef]
- Martins, C.; Dias, A.M.P.G.; Cruz, H. Blue gum: Assessment of its potential for glued laminated timber beams. Eur. J. Wood Wood Prod. 2020, 78, 905–913. [Google Scholar] [CrossRef]
- Alvite, J.D.B.; Touza Vásquez, M.C.; Infante, F.S. Manual de la Madeira de Eucalipto Blanco; Fundación para o Fomento da Calidade Industrial e Desenvolvimento Tecnológico de Galicia: Ourense, Spain, 2002. [Google Scholar]
- Lara-Bocanegra, A.J.; Majano-Majano, A.; Arriaga, F.; Guaita, M. Eucalyptus globulus finger jointed solid timber and glued laminated timber with superior mechanical properties: Characterisation and application in strained gridshells. Constr. Build. Mater. 2020, 265, 120355. [Google Scholar] [CrossRef]
- Castro, G.; Paganini, F. Mixed glued laminated timber of poplar and Eucalyptus grandis clones. Holz Als Roh Werkst. 2003, 61, 291–298. [Google Scholar] [CrossRef]
- EN 13183-2; Moisture Content of a Piece of Sawn Timber Estimation by Electrical Resistance Method. CEN: Brussels, Belgium, 2002.
- EN 14081; Timber Structures—Strength Graded Structural Timber with Rectangular cross Section—Part 1: General Requirements. CEN: Brussels, Belgium, 2019.
- Ravenshorst, G.J.P.; van de Kuilen, J.W.G. Adjustment Factor for Moisture Content for the Wave Speed Measured with mtgBatch, EScan and MTG. TG1/0613/04rev.B; TU Delft: Delft, The Netherlands, 2013. [Google Scholar]
- EN 408; Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. CEN: Brussels, Belgium, 2012.
- EN 13183-1; Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Oven Dry Method. CEN: Brussels, Belgium, 2002.
- EN 384; Structural Timber—Determination of Characteristic Values of Mechanical Properties and Density. CEN: Brussels, Belgium, 2022.
- Gil-Moreno, D.; Ridley-Ellis, D.; O’Ceallaigh, C.; Harte, A.M. The relationship between bending and tension strength of Irish and UK spruce and pine. Eur. J. Wood Wood Prod. 2022, 80, 585–596. [Google Scholar] [CrossRef]
- Aicher, S.; Christian, Z.; Dill-Langer, G. Hardwood glulams—Emerging timber products of superior mechanical properties. In Proceedings of the WCTE 2014—World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Martins, C.; Ferreira, C.; Baño, V.; Dias, A.M.P.G. Experimental characterization of beech through tensile and bending tests. In Proceedings of the SHATIS′22—6th International Conference on Structural Health Assessment of Timber Structures, Prague, Czechia, 7–9 September 2011. [Google Scholar]
- Frühwald, K.; Schickhofer, G. Strength grading of hardwoods. In Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, Hannover, Germany, 2–5 May 2005; pp. 199–210. [Google Scholar]
- Rais, A.; Bacher, M.; Khaloian-Sarnaghi, A.; Zeilhofer, M.; Kovryga, A.; Fontanini, F.; Hilmers, T.; Westermayr, M.; Jacobs, M.; Pretzsch, H.; et al. Local 3D fibre orientation for tensile strength prediction of European beech timber. Constr. Build. Mater. 2021, 279, 122527. [Google Scholar] [CrossRef]
- Ehrhart, T.; Steiger, R.; Lehmann, M. European beech (Fagus sylvatica L.) glued laminated timber: Lamination strength grading, production and mechanical properties. Eur. J. Wood Wood Prod. 2020, 78, 971–984. [Google Scholar] [CrossRef]
Sample | Sub-Sample | Provenance | Width (mm) | Thickness (mm) | Length (mm) | No. of Specimens | |
---|---|---|---|---|---|---|---|
EG1 | EG1_1 | Pontevedra (Spain) | 90 (90) | 30 (28) | 2565 | 59 | 117 |
EG1_2 | 110 (110) | 30 (29) | 2570 | 58 | |||
EG2 | EG2_1 | Pontevedra (Spain) | 85 (90) | 20 (21) | 2565 | 55 | 110 |
EG2_2 | 110 (106) | 27 (23) | 2560 | 55 | |||
EG3 | EG3_1 | Coruña (Spain) | 120 (120) | 30 (29) | 2575 | 59 | 117 |
EG3_2 | 140 (140) | 30 (28) | 2545 | 58 | |||
EG4 | EG4_1 | Viana do Castelo (Portugal) | 100 (101) | 30 (29) | 2565 | 57 | 107 |
EG4_2 | 130 (131) | 30 (29) | 2540 | 50 | |||
EG5 | EG5 | Porto (Portugal) | 140 (140) | 30 (26) | 3090 | 118 |
Sub-Sample | EG1-1 | EG1-2 | EG2-1 | EG2-2 | EG3-1 | EG3-2 | EG4-1 | EG4-2 | EG5 | All |
---|---|---|---|---|---|---|---|---|---|---|
Sample | EG1 | EG2 | EG3 | EG4 | ||||||
Specimens | 59 | 58 | 55 | 55 | 59 | 58 | 57 | 50 | 118 | 569 |
117 | 110 | 117 | 107 | |||||||
ft,0 (N/mm2) | 85.3 | 70.9 | 101.5 | 70.6 | 65.7 | 69.6 | 74.6 | 71.3 | 84.0 (33.8) | 77.8 (16.2) |
78.2 (32.0) | 86.1 (34.7) | 67.7 (27.4) | 73.1 (32.6) | |||||||
Et,0 (kN/mm2) | 21.8 | 21.6 | 23.9 | 19.7 | 21.7 | 20.9 | 21.1 | 21.4 | 20.4 (15.5) | 21.3 (20.5) |
21.7 (18.7) | 21.8 (27.0) | 21.3 (19.1) | 21.2 (20.8) | |||||||
Edyn (kN/mm2) | 21.8 | 22.8 | 25.2 | 20.6 | 21.7 | 21.2 | 21.0 | 21.5 | 19.0 (14.3) | 21.4 (20.1) |
22.3 (17.0) | 22.9 (25.5) | 21.5 (16.1) | 21.2 (19.0) | |||||||
ρ (kg/m3) | 877 | 851 | 868 | 870 | 861 | 847 | 817 | 835 | 789 (10.3) | 840 (10.4) |
864 (10.5) | 869 (10.3) | 854 (9.5) | 826 (11.0) | |||||||
Wgrading (%) | 16.7 (9.1) | 12.6 (14.9) | 16.5 (10.4) | 15.5 (8.5) | 14.7 (6.2) | 15.2 (13.7) | ||||
Wtesting (%) | 9.3 (15.9) | 9.6 (7.9) | 10.0 (8.3) | 10.3 (13.2) | 12.8 (8.8) | 10.4 (16.3) |
Samples | Total | |||||
---|---|---|---|---|---|---|
EG1 | EG2 | EG3 | EG4 | EG5 | All | |
Specimens | 117 | 110 | 117 | 107 | 118 | 569 |
ft,0,k (N/mm2) | 32.8 (32.0) | 37.5 (34.7) | 34.4 (27.4) | 31.5 (32.6) | 31.7 (33.8) | 34.4 (16.2) |
Et,0,12% (kN/mm2) | 22.2 (18.7) | 22.4 (27.0) | 22.0 (19.1) | 21.9 (20.8) | 21.6 (15.5) | 22.0 (20.5) |
ρk (kg/m3) | 731 (10.5) | 714 (10.3) | 703 (9.5) | 676 (11.0) | 648 (10.3) | 686 (10.4) |
Property\Strength Profile | ET24 | ET28 | ET30 | ET34 | ET38 | ET42 |
---|---|---|---|---|---|---|
ft,0,k (N/mm2) | 24.0 | 28.0 | 30.0 | 34.0 | 38.0 | 42.0 |
Et,0,mean (kN/mm2) | 18.0 | 19.0 | 20.0 | 21.0 | 22.0 | 23.0 |
ρk (kg/m3) | 590 | 600 | 610 | 620 | 630 | 640 |
Combinations | First SC | Second SC | Third SC | Rejected |
---|---|---|---|---|
1 | ET42 (40%) | ET34 (30%) | ET28 (16%) | R (14%) |
2 | ET42 (40%) | ET34 (30%) | ET24 (24%) | R (6%) |
3 | ET42 (40%) | ET30 (54%) | - | R (6%) |
4 | ET42 (40%) | ET24 (59%) | - | R (1%) |
5 | ET38 (44%) | ET24 (55%) | - | R (1%) |
6 | ET34 (99%) | - | - | R (1%) |
Sample | ||||||
---|---|---|---|---|---|---|
EG1 | EG2 | EG3 | EG4 | EG5 | ALL | |
Edyn vs. ft,0,k | 0.15 | 0.49 | 0.10 | 0.27 | 0.19 | 0.17 |
Edyn vs. Et,0,mean | 0.67 | 0.86 | 0.74 | 0.64 | 0.85 | 0.71 |
Edyn vs. ρk | 0.19 | 0.06 | 0.10 | 0.23 | 0.04 | 0.16 |
ft,0,k vs. Et,0,mean | 0.18 | 0.49 | 0.06 | 0.20 | 0.21 | 0.21 |
ft,0,k vs. ρk | 0.23 | 0.05 | 0.07 | 0.23 | 0.00 | 0.05 |
Et,0,mean vs. ρk | 0.21 | 0.06 | 0.09 | 0.18 | 0.03 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.; Moltini, G.; Dias, A.M.P.G.; Baño, V. Machine Grading of High-Density Hardwoods (Southern Blue Gum) from Tensile Testing. Forests 2023, 14, 1623. https://doi.org/10.3390/f14081623
Martins C, Moltini G, Dias AMPG, Baño V. Machine Grading of High-Density Hardwoods (Southern Blue Gum) from Tensile Testing. Forests. 2023; 14(8):1623. https://doi.org/10.3390/f14081623
Chicago/Turabian StyleMartins, Carlos, Gonzalo Moltini, Alfredo M. P. G. Dias, and Vanesa Baño. 2023. "Machine Grading of High-Density Hardwoods (Southern Blue Gum) from Tensile Testing" Forests 14, no. 8: 1623. https://doi.org/10.3390/f14081623
APA StyleMartins, C., Moltini, G., Dias, A. M. P. G., & Baño, V. (2023). Machine Grading of High-Density Hardwoods (Southern Blue Gum) from Tensile Testing. Forests, 14(8), 1623. https://doi.org/10.3390/f14081623