Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source and Processing
2.3. Sample Selection
3. Methods
3.1. Multi-Scale Segmentation
3.2. Feature Extraction
3.2.1. Feature Set Construction
3.2.2. Feature Optimization
3.3. Classification Methods
3.3.1. ELM Algorithm
3.3.2. RF Algorithm
3.3.3. ROF Algorithm
3.3.4. ROF_ELM Algorithm
3.4. Accuracy Assessment
4. Results
4.1. Classification Performance of Different Feature Combinations
4.2. Comparison of Different Feature Optimization Algorithms
4.3. Visual Comparison of Mountain Vegetation Mapping Based on Different Classifiers
4.4. Assessing the Accuracy of the Classification Results
5. Discussion
5.1. The Influence of Incorporating Different Features on Mountain Vegetation Type Classification
5.2. The Performance of Different Classifiers in Mountain Vegetation Type Recognition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Mo, D.; Yan, E. Analysis on Topographic Effects of Commonly Used Vegetation Indices in Complex Mountain Area Based on Sentinel-2 Data. Chin. J. Ecol. 2022, 42, 956–965. [Google Scholar]
- Wu, T.; Luo, J.; Gao, L.; Sun, Y.; Dong, W.; Zhou, Y.N.; Liu, W.; Hu, X.; Xi, J.; Wang, C.; et al. Geo-Object-Based Vegetation Mapping via Machine Learning Methods with an Intelligent Sample Collection Scheme: A Case Study of Taibai Mountain, China. Remote Sens. 2021, 13, 249. [Google Scholar] [CrossRef]
- Yao, Y.H.; Suonan, D.Z.; Zhang, J.Y. Compilation of 1:50,000 vegetation type map with remote sensing images based on mountain altitudinal belts of Taibai Mountain in the North-South transitional zone of China. J. Geogr. Sci. 2020, 30, 267–280. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, T.; Luo, J.; Shi, H.; Hao, L. Remote Sensing Mapping of Mountain Vegetation via Uncertainty-based Iterative Optimization. Geo-Inf. Sci. 2022, 24, 1406–1419. [Google Scholar]
- Cai, Y.T.; Zhang, M.; Lin, H. Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 341–350. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Wang, A.; Chen, J. Object- and pixel-based classifications of macroalgae farming area with high spatial resolution imagery. Geocarto Int. 2018, 33, 1048–1063. [Google Scholar] [CrossRef]
- Nyamjargal, E.; Amarsaikhan, D.; Munkh-Erdene, A.; Battsengel, V.; Bolorchuluun, C. Object-based classification of mixed forest types in Mongolia. Geocarto Int. 2020, 35, 1615–1626. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X.; Jiang, D.; Wang, S.; Jiang, X. Study on Forest Classification Based on Object Oriented Techniques. Geo-Inf. Sci. 2012, 14, 514–522. [Google Scholar] [CrossRef]
- Agarwal, S.; Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Mapping Urban Tree Species Using Very High Resolution Satellite Imagery: Comparing Pixel-Based and Object-Based Approaches. ISPRS Int. J. Geo-Inf. 2013, 2, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.A.; Chen, Z.; Li, M.; Zhi, J.; Wang, H. Accuracy Improvements to Pixel-Based and Object-Based LULC Classification with Auxiliary Datasets from Google Earth Engine. Remote Sens. 2021, 13, 453. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, W.; Li, F.; Shao, Z.; Fu, X. Vegetation Type Classification Based on 3D Convolutional Neural Network Model: A Case Study of Baishuijiang National Nature Reserve. Forests 2022, 13, 906. [Google Scholar] [CrossRef]
- Ning, L.; Zhang, X. A Preliminary Study on Vegetation Classification based on Texture Information of Landsat-8 Images. J. Cent. South Univ. For. Technol. 2014, 34, 60–64. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Li, B. Forest Type Classification Based on Multi-temporal Sentinel-2A/B Imagery Using U-Net Model. For. Res. 2022, 35, 103–111. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Liu, Y.; Chang, Z.; Han, W.; Liu, S. Remote sensing recognition of agricultural crops based on Sentinel—2 data with multi—Feature optimization. Remote Sens. Nat. Resour. 2023, 1–9. Available online: http://kns.cnki.net/kcms/detail/10.1759.P.20230531.0953.006.html (accessed on 1 July 2023).
- Zhou, X.; Zheng, L.; Huang, H. Classification of Forest Stand Based on Multi-Feature Optimization of UAV Visible Light Remote Sensing. Sci. Silvae Sin. 2021, 57, 24–36. [Google Scholar]
- Liu, J.; Li, L.; Ren, C.; Mao, D.; Zhang, B. Information Extraction of Coastal Wetlands in Yellow River Estuary by Optimal Feature-based Random Forest Model. Wetl. Sci. 2018, 16, 97–105. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Huang, L.; Yang, Q.; She, B.; Hong, Q.; Jiang, F. Extraction of soybean planting areas combining Sentinel-2 images and optimized feature model. Trans. Chin. Soc. Agric. Eng. 2021, 37, 110–119. [Google Scholar]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Z.; Guo, Y.; Tao, G.; Ou, X. Mountain vegetation mapping using remote sensing. J. Yunnan Univ. (Nat. Sci. Ed.) 2013, 35, 416–427. [Google Scholar]
- Du, Z.; Ma, W.; Zhou, Q.; Chen, H.; Deng-zeng, Z.; Liu, J. Research progress of vegetation recognition methods based on remote sensing technology. Ecol. Sci. 2022, 41, 222–229. [Google Scholar] [CrossRef]
- Yang, C.; Wu, G.; Li, Q.; Qang, J.; Qu, L.; Ding, K. Research Progress on Remote Sensing Classification of Vegetation. Geogr. Geo-Inf. Sci. 2018, 34, 24–32. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, H.; Tao, Y.; Wang, S. A Review of Hyperspectral Remote Sensing Image Classification Based on Ensemble Learning. Geomat. Spat. Inf. Technol. 2023, 46, 49–52+60. [Google Scholar]
- Chi, M.; Kun, Q.; Benediktsson, J.A.; Feng, R. Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2009, 6, 762–766. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Kuncheva, L.I. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Liu, T.; Fan, Q.; Kang, Q.; Niu, L. Extreme Learning Machine Based on Firefly Adaptive Flower Pollination Algorithm Optimization. Processes 2020, 8, 1583. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 2015, 44, 103–115. [Google Scholar] [CrossRef]
- Han, M.; Liu, B. An Improved Rotation Forest Classification Algorithm. J. Electron. Inf. Technol. 2013, 35, 2896–2900. [Google Scholar] [CrossRef]
- Du, X. A Large Sample Ensemble Classification Algorithm Based on Rotation-forest-extreme Learning Machine classifier. Sci. Technol. Eng. 2018, 18, 231–235. [Google Scholar]
- Tang, Y.; Wang, Z. Quantitative Analysis of Soil Erosion after Earthquake in Jiuzhaigou County Based on Rulse. Chem. Eng. Des. Commun. 2021, 47, 86–87+100. [Google Scholar]
- Hao, Y.; Jiang, H.; Wang, J.; Jin, J.; Ma, Y. Vegetation Landscape Change Pattern and Habitats Fragmentation in Jiuzhaigou Nature Reserve. Sci. Geogr. Sin. 2009, 29, 886–892. [Google Scholar]
- Fu, X.; Zhou, W.; Zhou, X.; Li, F. Application of Machine Learning in Vegetation Interpretation of Natural Protected Areas in Jiuzhaigou County. Nat. Prot. Areas 2023, 3, 53–65. [Google Scholar]
- Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen, W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M.; et al. Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens. 2021, 13, 1349. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, Q.; Zheng, H.; Zhang, F.; Hou, P. National Ecosystem Survey and Assessment of China (2000–2010). Bull. Chin. Acad. Sci. 2014, 29, 426–466. [Google Scholar]
- Zhang, X.; Liu, L.Y.; Chen, X.D.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, M.; Liang, D. Estimation Method of Phyllostachys Edulis Forest Canopy Density Based on UAV Visible Image. J. Zhejiang A F Univ. 2022, 39, 981–988. [Google Scholar]
- Fu, B.; Liu, M.; He, H.; Lan, F.; He, X.; Liu, L.; Huang, L.; Fan, D.; Zhao, M.; Jia, Z. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102553. [Google Scholar] [CrossRef]
- Ahmadi, K.; Mahmoodi, S.; Pal, S.C.; Saha, A.; Chowdhuri, I.; Nguyen, T.T.; Jarvie, S.; Szostak, M.; Socha, J.; Thai, V.N. Improving species distribution models for dominant trees in climate data-poor forests using high-resolution remote sensing. Ecol. Model. 2023, 475, 110190. [Google Scholar] [CrossRef]
- Wang, L.; Kong, Y.; Yang, X.; Xu, Y.; Liang, L.; Wang, S. Classification of land use in farming areas based on feature optimization random forest algorithm. Trans. Chin. Soc. Agric. Eng. 2020, 36, 244–250. [Google Scholar]
- Reyes, O.; Morell, C.; Ventura, S. Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context. Neurocomputing 2015, 161, 168–182. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Venalainen, M.S.; Klen, R.; Elo, L.L. Stable Iterative Variable Selection. Bioinformatics 2021, 37, 4810–4817. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, C.; Feng, H. A Thrust Allocation Method Based on Extreme Learning Machine. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2021, 49, 34–39+70. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, B.; Zhang, H.; Zhang, W. Research on GF-2 Image Classification Based on Feature Optimization Random Forest Algorithm. Spacecr. Recovery Remote Sens. 2022, 43, 115–126. [Google Scholar]
- Wang, Q. Data Analysis of College Practice Teaching Based on Rotation Forests and LightGBM Classification algorithm. Master’s Thesis, Jilin University, Changchun, Chima, 2020. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Sun, B.; Gao, Z.; Li, Y.; Wang, H. Recognition of Vegetation Types in Hulunbuir Sandy Land and Its Surrounding Areas Based on GEE Cloud Platform and Sentinel-2 Time Series Data. Remote Sens. Technol. Appl. 2022, 37, 982–992. [Google Scholar]
- Yang, D.; Zhou, Y.; Yang, X.; Gao, L.; Feng, L. Vegetation Mapping in Taibai Mountain Area Supported by LSTM with Time Series Sentinel-1A Data. J. Geo-Inf. Sci. 2020, 22, 2445–2455. [Google Scholar]
- Pouliot, D.; Latifovic, R.; Zabcic, N.; Guindon, L.; Olthof, I. Development and assessment of a 250m spatial resolution MODIS annual land cover time series (2000–2011) for the forest region of Canada derived from change-based updating. Remote Sens. Environ. 2014, 140, 731–743. [Google Scholar] [CrossRef]
- You, J.; Li, M.; Fan, W.; Quan, Y.; Wang, B.; Mo, Z.; Zhu, Z. Stand Type Identification Based on Hyperspectral and LiDAR Data. Sci. Silvae Sin. 2021, 57, 119–129. [Google Scholar]
- Liang, X.; Zhao, Y.; Zhen, Z.; Wei, Q. Forest Vegetation Classification of Landsat-8 Based on Rotation Forest. J. Northeast For. Univ. 2017, 45, 39–48. [Google Scholar] [CrossRef]
Code | Types | Samples | Description |
---|---|---|---|
1 | Coniferous forest | 238 | The forest dominated by cone-bearing trees, such as pine or spruce. |
2 | Broad-leaved forest | 314 | The forest dominated by broad-leaved trees, such as oaks or maples. |
3 | Coniferous and broad-leaved mixed forest | 119 | The forest comprising a combination of both coniferous and broad-leaved trees. |
4 | Shrubland | 224 | Area covered by dense growths of low, woody plants. |
5 | Grassland | 324 | Open land dominated by grasses and other herbaceous plants. |
6 | Water | 72 | Areas covered by bodies of water, such as lakes, rivers, or ponds. |
7 | Built-up land | 114 | Land used for urban development, with buildings and infrastructure. |
8 | Bare land | 182 | Land without any significant vegetation cover. |
9 | Cultivated vegetation | 74 | Land used for agriculture or cultivated crops. |
Total | 1661 |
Type of Feature | Variable Name | Total Number of Variables |
---|---|---|
Spectral features | Mean, standard deviation, brightness, max.diff | 22 |
Vegetation indices | SAVI, RVI, REDNDVI, DVI | 4 |
Terrain features | DEM, slope, aspect | 3 |
Texture features | Homogeneity, contrast, dissimilarity, correlation, main direction, entropy, standard variance, angular second moment | 8 |
Geometric features | Main direction, shape index, compactness, roundness, border index, asymmetry, elliptic fit, density, rectangular fit, radius of smallest/largest enclosing ellipse | 11 |
Multi-temporal features | NDVI_spring, NDVI_summer, NDVI_autumn, NDVI_winter | 4 |
Code | Feature Combination | Total Number of Features |
---|---|---|
F1 | Spectral | 22 |
F2 | Spectral + vegetation indices | 26 |
F3 | Spectral + terrain | 25 |
F4 | Spectral + texture | 30 |
F5 | Spectral + geometric | 33 |
F6 | Spectral + multi-temporal | 26 |
F7 | Spectral + terrain + vegetation indices | 29 |
F8 | Spectral + terrain + vegetation indices + multi-temporal | 33 |
F9 | Spectral + terrain + vegetation indices + multi-temporal + texture | 41 |
F10 | Spectral + terrain + vegetation indices + multi-temporal + texture + geometric | 52 |
Code | Execution Time/s | |||
---|---|---|---|---|
ELM | RF | ROF | ROF_ELM | |
F1 | 0.53 | 24.01 | 92.77 | 246.05 |
F2 | 0.72 | 25.95 | 89.01 | 273.92 |
F3 | 0.85 | 25.27 | 86.03 | 310.68 |
F4 | 0.48 | 25.87 | 92.35 | 263.75 |
F5 | 0.32 | 25.42 | 93.11 | 239.04 |
F6 | 0.63 | 25.49 | 90.05 | 263.59 |
F7 | 0.53 | 30.17 | 94.96 | 294.46 |
F8 | 0.91 | 25.55 | 90.06 | 270.18 |
F9 | 0.46 | 24.93 | 104.73 | 321.49 |
F10 | 0.67 | 25.58 | 91.63 | 343.42 |
Algorithm | ELM | RF | ROF | ROF_ELM | ||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | Time/s | Accuracy (%) | Time/s | Accuracy (%) | Time/s | Accuracy (%) | Time/s | |
RF_RFE | 86.50 | 0.49 | 87.30 | 17.33 | 89.65 | 80.59 | 89.38 | 209.34 |
ReliefF | 84.38 | 0.39 | 86.90 | 16.55 | 88.41 | 64.38 | 86.86 | 216.45 |
Algorithm | ELM | RF | ROF | ROF_ELM | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
1 | 84.09 | 91.36 | 86.36 | 92.68 | 92.05 | 95.29 | 86.36 | 92.68 |
2 | 82.08 | 80.56 | 90.57 | 75.00 | 93.40 | 77.95 | 84.91 | 78.26 |
3 | 57.14 | 66.67 | 55.10 | 79.41 | 46.94 | 85.19 | 57.14 | 71.79 |
4 | 83.75 | 79.76 | 81.25 | 79.27 | 90.00 | 86.75 | 88.75 | 83.53 |
5 | 95.83 | 88.46 | 90.62 | 94.57 | 98.86 | 97.94 | 96.88 | 92.08 |
6 | 79.17 | 90.48 | 87.50 | 95.45 | 87.50 | 95.45 | 87.50 | 95.45 |
7 | 90.91 | 93.75 | 96.97 | 88.89 | 96.97 | 88.89 | 93.94 | 93.94 |
8 | 93.02 | 100.00 | 97.67 | 100.00 | 97.67 | 100.00 | 93.02 | 97.56 |
9 | 100.00 | 66.67 | 92.86 | 86.67 | 92.86 | 92.86 | 100.00 | 93.33 |
OA (%) | 84.62 | 86.12 | 89.68 | 87.05 | ||||
AA (%) | 85.11 | 86.55 | 88.48 | 87.61 | ||||
Kappa | 0.820 | 0.837 | 0.879 | 0.849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Zhou, W.; Zhou, X.; Li, F.; Hu, Y. Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests 2023, 14, 1624. https://doi.org/10.3390/f14081624
Fu X, Zhou W, Zhou X, Li F, Hu Y. Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests. 2023; 14(8):1624. https://doi.org/10.3390/f14081624
Chicago/Turabian StyleFu, Xiaoli, Wenzuo Zhou, Xinyao Zhou, Feng Li, and Yichen Hu. 2023. "Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations" Forests 14, no. 8: 1624. https://doi.org/10.3390/f14081624
APA StyleFu, X., Zhou, W., Zhou, X., Li, F., & Hu, Y. (2023). Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests, 14(8), 1624. https://doi.org/10.3390/f14081624