The Impact of Digital Economy Empowerment on Green Total Factor Productivity in Forestry
Abstract
:1. Introduction
2. Research Hypothesis
2.1. Digital Economy and Green Total Factor Productivity in Forestry
2.2. Digital Economy and Green Innovation
2.3. Digital Economy, Green Technology Innovation and Green Total Factor Productivity in Forestry
2.4. Spatial Spillovers of the Digital Economy and Green Total Factor Productivity in Forestry
3. Research Design and Data Sources
3.1. Econometric Model
3.1.1. Basic Model
3.1.2. Intermediary Effect Model
3.1.3. Spatial Econometric Model
3.2. Variable Selection
3.2.1. Explained Variable
3.2.2. Core Explanatory Variables
3.2.3. Mediating Variable
3.2.4. Control Variables
3.3. Data Sources
4. Empirical Results
4.1. Basic Model Analysis of the Impact of the Digital Economy on Forestry GTFP
4.2. Modeling the Intermediary Effects of Adding Green Innovation
4.3. Robustness Test of the Basic Model
4.3.1. Instrumental Variable Method
4.3.2. Excluding Municipalities
4.4. Time Trend Analysis of the Impact of the Digital Economy on Forestry GTFP
4.5. Heterogeneity Test of the Impact of the Digital Economy on Forestry GTFP
4.5.1. By Geographical Location
4.5.2. By the Hu Huanyong Line
4.5.3. By Level of Economic Development
4.5.4. Quantile Regression
4.6. Spatial Spillover Effect of the Impact of the Digital Economy on Forestry GTFP
4.6.1. Spatial Correlation Test
4.6.2. Regression Results of the Dynamic Spatial Durbin Model
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Policy Recommendations
5.4. Shortcomings and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, Z.; Liu, H.; Strömberg, C.A.; Wang, H.; Strong, P.J.; Yang, X.; Wu, Y. Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Sci. Total Environ. 2018, 615, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dudek, D.J.; Leblanc, A. Offsetting new CO2 emissions: A rational first greenhouse policy step. Contemp. Econ. Policy 1990, 8, 29–42. [Google Scholar] [CrossRef]
- Chen, C.; Ye, F.; Xiao, H.; Xie, W.; Liu, B.; Wang, L. The digital economy, spatial spillovers and forestry green total factor productivity. J. Clean. Prod. 2023, 405, 136890. [Google Scholar] [CrossRef]
- Xiao, H.; Ning, C.; Xie, F.; Kang, X.; Zhu, S. Influence of rural labor migration behavior on the transfer of forestland. Nat. Resour. Model. 2020, 34, e12293. [Google Scholar] [CrossRef]
- Ning, Y.L.; Shen, W.H.; Song, C.; Zhao, R. Studying on the promotion strategies of high-quality development of forestry industry. Issues. Agric. Econ. (In Chinese). 2021, 494, 117–122. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Green TFP Intensity Impact on Sustainable East Asian Productivity Growth. Econ. Anal. Policy 2012, 42, 67–78. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.G. Impact and threshold effect of Internet technology upgrade on forestry green total factor productivity: Evidence from China. J. Clean. Prod. 2020, 271, 122657. [Google Scholar] [CrossRef]
- Helvoigt, T.L.; Adams, D.M. A stochastic frontier analysis of technical progress, efficiency change and productivity growth in the Pacific Northwest sawmill industry. For. Policy Econ. 2009, 11, 280–287. [Google Scholar] [CrossRef]
- Hseu, J.S.; Shang, J.K. Productivity changes of pulp and paper industry in OECD countries, 1991-2000: A non-parametric Malmquist approach. For. Policy Econ. 2005, 7, 411–422. [Google Scholar] [CrossRef]
- Lai, Z.Q.; Zhang, Z.H. The super-efficiency DEA analysis of Guangdong forestry input-output. J. South China Agric. Univ. 2008, 4, 43–48. (In Chinese) [Google Scholar]
- Zhong, S.; Wang, H.L. The effect of total factor productivity of forestry industry on CO2 emissions: A spatial econometric analysis of China. Sci. Rep. 2021, 11, 14200. [Google Scholar] [CrossRef]
- Lv, J.H.; Sun, J.Y.; Cai, X.T. Spatial-Temporal Evolution of Green Total Factor Productivity of Forestry in China. J. Agro-For. Econ. Manag. (In Chinese). 2022, 21, 320–330. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Niu, F.J. The Role of the Digital Economy in Rebuilding and Maintaining Social Governance Mechanisms. Front. Public Health 2022, 9, 819727. [Google Scholar] [CrossRef]
- Chen, P.Y. Is the digital economy driving clean energy development?—New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Li, X.Y.; Liang, X.P.; Yu, T.; Ruan, S.J.; Fan, R. Research on the Integration of Cultural Tourism Industry Driven by Digital Economy in the Context of COVID-19-Based on the Data of 31 Chinese Provinces. Front. Public Health 2022, 10, 780476. [Google Scholar] [CrossRef]
- Qiu, Z.X.; Zhou, Y.H. Productivity: An Analysis Based on National Big Data Comprehensive Pilot Zone. J. Financ. Econ. (In Chinese). 2021, 47, 4–17. [Google Scholar] [CrossRef]
- Pan, W.R.; Xie, T.; Wang, Z.W.; Ma, L.S. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Zhang, Y. Digital economy, spillover effect and total factor productivity improvement. Guizhou Soc. Sci. (In Chinese). 2021, 3, 139–145. [Google Scholar] [CrossRef]
- Yang, H.M.; Jiang, L. Digital Economy, Spatial Effects and Total Factor Productivity. Stat. Res. (In Chinese). 2021, 38, 3–15. [Google Scholar] [CrossRef]
- Fan, X.; Yin, Q.S. Does Digital Finance Promote Green Total Factor Productivity? J. Shanxi Univ. (Philos. Soc. Sci. Ed.) (In Chinese). 2021, 44, 109–119. [Google Scholar] [CrossRef]
- Zhou, X.H.; Liu, Y.Y.; Peng, L.Y. Development of Digital Economy and Improvement of Green Total Factor Productivity. Shanghai J. Econ. (In Chinese). 2021, 399, 51–63. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Yan, X. Does the Digital Economy Increase Green TFP in Cities? Int. J. Environ. Res. Public Health 2023, 20, 1442. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total. Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Jia, X. Digital Economy, Factor Allocation, and Sustainable Agricultural Development: The Perspective of Labor and Capital Misallocation. Sustainability 2023, 15, 4418. [Google Scholar] [CrossRef]
- Hu, J.; Li, X. Construction and Optimization of Green Supply Chain Management Mode of Agricultural Enterprises in the Digital Economy. Int. J. Inf. Syst. Supply Chain Manag. 2021, 15, 1–18. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Pietrzak, M.B. Digital Economy in Visegrad Countries. Multiple-criteria Decision Analysis at Regional Level in The Years 2012 and 2015. J. Compet. 2017, 9, 5–18. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, Y.Y.; Song, L.J.; Wang, Y.J. Theoretical framework and research prospect of digital economy. J. Manag. World 2022, 38, 208. (In Chinese) [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.G. Research on three-dimensional technology-industry-operation development path of “Internet + Forestry” in China. World For. Res. 2018, 31, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Fu, H.N.; Li, X.C. Digital Economy Drives Agricultural Modernization in China: Mechanism and Effects. J. South China Agric. Univ. (Soc. Sci. Ed.) 2023, 22, 18–31. (In Chinese) [Google Scholar]
- Ma, Z.; Liu, T.; Li, J.; Liu, Z.; Chen, W. Spatial Effect Analysis of Forestry Technology Innovation on Forestry Industry Economic Growth. Forests 2023, 14, 557. [Google Scholar] [CrossRef]
- Bonsu, N.O. Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. J. Clean. Prod. 2020, 256, 120659. [Google Scholar] [CrossRef]
- Shi, D.; Sun, G.L. The Influence of the Integration of Digital Economy and Real Economy on Green Innovation. Reform 2023, 348, 1–13. (In Chinese) [Google Scholar]
- Johnson, J.S.; Friend, S.B.; Lee, H.S. Big Data Facilitation, Utilization, and Monetization: Exploring the 3Vs in a New Product Development Process. J. Prod. Innov. Manag. 2017, 34, 640–658. [Google Scholar] [CrossRef]
- Liu, X.Z.; Zhu, S.Y.; Zhou, H.M. Does the Development of Digital Economy in the Yangtze River Economic Belt Promote Regional Green Innovation. Study Pract. 2022, 464, 21–29. (In Chinese) [Google Scholar] [CrossRef]
- Kahouli, B.; Hamdi, B.; Nafla, A.; Chabaane, N. Investigating the relationship between ICT, green energy, total factor productivity, and ecological footprint: Empirical evidence from Saudi Arabia. Energy Strat. Rev. 2022, 42, 100871. [Google Scholar] [CrossRef]
- Lun, X.B.; Liu, Y. Digital government, digital economy and green technology. J. Shanxi Univ. Financ. Econ. 2022, 44, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Haucap, J. Competition and Competition Policy in a Data-Driven Economy. Intereconomics 2019, 54, 201–208. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. (In Chinese) [Google Scholar] [CrossRef]
- Wei, X.J.; Zhang, M.X. Empirical Study on Mechanism of Factors Influencing Chinese Forestry Industrial Agglomeration—Based on Spatial Durbin Model (SDM). Resour. Dev. Mark. 2018, 34, 1731–1737. (In Chinese) [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. J. Manag. World 2020, 36, 65–76. (In Chinese) [Google Scholar]
- Huang, D.P.; Zhu, X.Y. Comprehensive evaluation and space-time evolution of China’s digital economy development level. Stat. Decis. 2022, 38, 103–107. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Z.Q.; Wang, H. Local-Neighborhood Effect of Green Technology of Environmental Regulation. China Ind. Econ. 2019, 370, 100–118. (In Chinese) [Google Scholar] [CrossRef]
- Xu, J.; Cui, J.B. Low-Carbon Cities and Firms’ Green Technological Innovation. China Ind. Econ. 2020, 393, 178–196. (In Chinese) [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Liu, C.; Xiong, L.; Qian, Z. The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective. Land 2022, 11, 1900. [Google Scholar] [CrossRef]
- Zheng, M.; Feng, G.-F.; Jang, C.-L.; Chang, C.-P. Terrorism and green innovation in renewable energy. Energy Econ. 2021, 104, 105695. [Google Scholar] [CrossRef]
- Gao, Y.N.; Zhang, M.C.; Zheng, J.H. Accounting and determinants analysis of China’s provincial total factor productivity considering carbon emissions. China Econ. Rev. 2021, 65, 101576. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energy Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, C.-C.; Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- Sadorsky, P. Financial development and energy consumption in Central and Eastern European frontier economies. Energy Policy 2011, 39, 999–1006. [Google Scholar] [CrossRef]
- Acheampong, A.O. Modelling for insight: Does financial development improve environmental quality? Energy Econ. 2019, 83, 156–179. [Google Scholar] [CrossRef]
- Zhu, X.A.; Ma, Y.G. Research on the Impact of Digital Economy on Green Total Factor Productivity. Econ. Probl. 2022, 11, 1–11. (In Chinese) [Google Scholar]
- Li, X.Z.; Li, J.Y. Research on the Influence of Digital Economy Development on Urban-rural Income Gap. J. Agrotech. Econ. 2022, 322, 77–93. (In Chinese) [Google Scholar] [CrossRef]
- Mao, F.W.; Zhang, F. The Evolution of Regional Digital Economy in China:1994~2018. J. Quant. Technol. Econ. 2022, 38, 3–25. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.; Jia, C. How does environmental regulation affect industrial green productivity of China’s cities. Environ. Dev. Sustain. 2022, 25, 10143–10169. [Google Scholar] [CrossRef]
Indicator Type | Indicator | Definition |
---|---|---|
Forestry inputs | Labor input | Number of employees in the forestry system at the end of the year (people) |
Land input | Forest area (millionha) | |
Capital input | Completed investment in forestry-fixed assets (RMB million) | |
Energy input | Total regional energy consumption × gross regional forestry product/gross regional product (million tons of standard coal) | |
Forestry desired outputs | Economic output | Forestry industry GDP (billion CYN) |
Ecological output | Area afforested in the year (thousands of ha) | |
Forestry undesired outputs | Forestry wastewater emissions | Regional industrial COD emissions × regional forestry output/regional gross industrial product (million tons) |
Forestry waste gas emissions | Regional industrial SO2 emissions × regional forestry output/regional industrial GDP (million tons) | |
Forestry solid waste generation | Regional industrial solid waste generation × regional forestry output value/regional gross industrial product (million tons) |
Variable Type | Variable | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
Dependent variable | GTFP | 0.549 | 0.312 | 0.095 | 1.428 |
Core independent variable | TDE | 0.123 | 0.086 | 0.041 | 0.563 |
STDE | 0.022 | 0.043 | 0.002 | 0.317 | |
Mediating variable | GRE | 0.089 | 0.198 | 0.001 | 1.271 |
Control variables | IS | 0.096 | 0.058 | 0.015 | 0.296 |
TEC | 0.003 | 0.002 | 0.001 | 0.014 | |
EDU | 0.034 | 0.015 | 0.013 | 0.089 | |
POLL | 0.08 | 0.074 | 0.002 | 0.435 | |
IN | 10.294 | 0.257 | 9.781 | 11.004 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
FE | FE | FE | FE | |
GTFP | GTFP | GRE | GTFP | |
TDE | 1.091 *** | 1.169 *** | −0.403 *** | 1.242 *** |
(3.40) | (3.71) | (−2.82) | (3.94) | |
STDE | −1.400 ** | −1.704 *** | 1.519 *** | −1.979 *** |
(−2.35) | (−2.90) | (5.71) | (−3.35) | |
IS | 0.361 | −0.723 *** | 0.492 * | |
(1.26) | (−5.54) | (1.70) | ||
TEC | 15.046 *** | 18.855 *** | 11.635 *** | |
(4.25) | (11.75) | (3.17) | ||
EDU | −1.514 * | −0.804 * | −1.369 | |
(−1.67) | (−1.96) | (−1.52) | ||
POLL | −0.547 *** | 0.053 | −0.557 *** | |
(−5.33) | (1.14) | (−5.43) | ||
IN | 0.391 *** | 0.040 | 0.384 *** | |
(4.95) | (1.12) | (4.87) | ||
GRE | 0.181 *** | |||
(3.34) | ||||
_cons | 0.447 *** | −3.562 *** | −0.268 | −3.513 *** |
(15.63) | (−4.43) | (−0.73) | (−4.38) | |
N | 1939 | 1939 | 1939 | 1939 |
R2 | 0.761 | 0.773 | 0.885 | 0.774 |
Variable | (1) | (2) |
---|---|---|
GTFP | GTFP | |
TDE | 15.382 * | 1.114 *** |
(8.505) | (0.322) | |
STDE | −41.9148 ** | −1.426 ** |
(20.739) | (0.614) | |
Control variables | Yes | Yes |
_cons | 0.614 | −3.595 *** |
(2.6) | (0.803) | |
N | 1939 | 1911 |
R2 | 0.774 |
Variable | GTFP |
---|---|
DE | 0.812 ** |
(2.46) | |
STDE | −1.764 *** |
(−2.83) | |
TDE2014 | 0.521 *** |
(3.16) | |
TDE2015 | 0.395 ** |
(2.43) | |
TDE2016 | 0.219 |
(1.34) | |
TDE2017 | 0.300 * |
(1.82) | |
TDE2018 | 0.324 * |
(1.95) | |
TDE2019 | 0.521 *** |
(3.16) | |
cons | −3.848 *** |
(−4.77) | |
Control variables | Yes |
_cons | −3.848 *** |
(−4.77) | |
N | 1939 |
R2 | 0.774 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
TDE | 1.271 ** | 0.035 | 2.480 *** | 0.886 *** | 4.644 *** | 2.725 *** | −0.821 | 2.046 *** |
(2.37) | (0.06) | (4.87) | (2.63) | (5.37) | (3.93) | (−1.10) | (3.44) | |
STDE | −1.978 ** | 0.779 | −4.262 *** | −1.150 * | −8.941 *** | −5.560 *** | 2.796 | −2.807 *** |
(−2.33) | (0.58) | (−3.56) | (−1.87) | (−5.14) | (−2.84) | (1.35) | (−2.93) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
_cons | −5.239 *** | −3.115 ** | −2.997 *** | −3.323 *** | −8.851 *** | −2.575 ** | −1.231 | −5.685 *** |
(−3.16) | (−2.38) | (−2.77) | (−3.87) | (−3.78) | (−2.47) | (−0.78) | (−3.48) | |
N | 693 | 700 | 546 | 1771 | 168 | 531 | 598 | 762 |
R2 | 0.781 | 0.801 | 0.876 | 0.811 | 0.843 | 0.862 | 0.838 | 0.774 |
Variables | (1) | (2) | (3) |
---|---|---|---|
0.25 | 0.50 | 0.75 | |
TDE | −1.156 ** | 0.674 | −0.235 * |
(0.018) | (0.252) | (0.088) | |
STDE | 1.922 ** | 0.611 | −0.939 *** |
(0.044) | (0.663) | (0.000) | |
Control variables | Yes | Yes | Yes |
Year | TDE | GTFP | ||
---|---|---|---|---|
I | p-Value | I | p-Value | |
2013 | 0.467 | 0.000 | 0.691 | 0.000 |
2014 | 0.461 | 0.000 | 0.790 | 0.000 |
2015 | 0.419 | 0.000 | 0.790 | 0.000 |
2016 | 0.395 | 0.000 | 0.728 | 0.000 |
2017 | 0.402 | 0.000 | 0.784 | 0.000 |
2018 | 0.347 | 0.000 | 0.809 | 0.000 |
2019 | 0.300 | 0.000 | 0.792 | 0.000 |
(1) | (2) | (3) | |
---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | |
TDE | 0.599 *** | 2.920 * | 3.518 * |
(2.78) | (1.74) | (1.92) | |
STDE | −1.108 ** | −1.207 | −2.315 |
(−2.54) | (−0.33) | (−0.57) | |
IS | −0.741 ** | 0.324 | −0.416 |
(−2.56) | (0.30) | (−0.40) | |
TEC | 5.579 ** | 35.789 ** | 41.368 ** |
(2.49) | (2.06) | (2.20) | |
EDU | −1.056 * | −8.060 * | −9.116 * |
(−1.83) | (−1.83) | (−1.91) | |
POLL | −0.283 *** | −1.909 *** | −2.192 *** |
(−4.48) | (−4.61) | (−4.79) | |
IN | 0.373 *** | 0.259 ** | 0.632 *** |
(10.42) | (2.29) | (5.50) | |
Spatial rho | 0.850 *** | ||
(72.45) | |||
sigma2_e | 0.005 *** | ||
(29.79) | |||
N | 1939 | 1939 | 1939 |
R2 | 0.510 | 0.510 | 0.510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ma, Z.; Xiao, H.; Li, J.; Chen, W. The Impact of Digital Economy Empowerment on Green Total Factor Productivity in Forestry. Forests 2023, 14, 1729. https://doi.org/10.3390/f14091729
Chen H, Ma Z, Xiao H, Li J, Chen W. The Impact of Digital Economy Empowerment on Green Total Factor Productivity in Forestry. Forests. 2023; 14(9):1729. https://doi.org/10.3390/f14091729
Chicago/Turabian StyleChen, Hanting, Zhuoya Ma, Hui Xiao, Jing Li, and Wenhui Chen. 2023. "The Impact of Digital Economy Empowerment on Green Total Factor Productivity in Forestry" Forests 14, no. 9: 1729. https://doi.org/10.3390/f14091729
APA StyleChen, H., Ma, Z., Xiao, H., Li, J., & Chen, W. (2023). The Impact of Digital Economy Empowerment on Green Total Factor Productivity in Forestry. Forests, 14(9), 1729. https://doi.org/10.3390/f14091729