Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forest Diseases and Pests and Forest Area Data
2.2. Climate Data
2.2.1. Temperature and Precipitation Data
2.2.2. Solar Radiation Data
2.3. Incidence of Forest Diseases and Pests
2.4. Determination of Primary Forest Disease and Pest Factors
2.5. Univariate Linear and Piecewise Trend Regression
3. Results
3.1. Interannual Spatial and Temporal Patterns of Forest Area and Pests in China
3.1.1. Spatial and Temporal Patterns of Forest Area in China
3.1.2. Analysis of the Overall Spatial and Temporal Patterns and Trends of Forest Pests and Diseases in China
3.2. Climatic Drivers of Forest Diseases and Pests in China
3.2.1. Spatial and Temporal Patterns of Spring Climatic Factors in China
3.2.2. Primary Factors of Forest Diseases and Pests in China
3.3. Analysis of Forest Disease and Pest Turning Point and Driving Mechanisms in China
3.3.1. Analysis of the Turning Point of Forest Diseases and Pests in China
3.3.2. Transition Characteristics of the Incidence of Forest Diseases and Insect Pests in China
3.3.3. Turning Point Analysis of Spring Climatic Factors on Driving Mechanisms of Forest Diseases and Pests in China
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prospero, S.; Botella, L.; Santini, A.; Robin, C. Biological control of emerging forest diseases: How can we move from dreams to reality? For. Ecol. Manag. 2021, 496, 119377. [Google Scholar] [CrossRef]
- Deepika, P.; Kaliraj, S. A survey on pest and disease monitoring of crops. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 156–160. [Google Scholar]
- Li, W. Degradation and restoration of forest ecosystems in China. For. Ecol. Manag. 2004, 201, 33–41. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Jactel, H.; Koricheva, J.; Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 2019, 35, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Desprez-Loustau, M.-L.; Marçais, B.; Nageleisen, L.-M.; Piou, D.; Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 2006, 63, 597–612. [Google Scholar] [CrossRef]
- Cui, M. Status and prospect of forest pest control in china. Flowers 2018, 08, 258. [Google Scholar]
- Fu, Y.; Xiao, H.; Zhang, Z.; Shi, H.; Wang, L.; Li, G. A preliminary study on the occurrence regularity of white moth in northeast hubei. J. Hubei Eng. Univ. 2018, 38, 30–32. [Google Scholar]
- Zhang, Z.; Li, D. Analysis on outbreak mechanism of masson pine caterpillar. Sci. Silv. Sin. 2008, 44, 140–150. [Google Scholar]
- Simler-Williamson, A.B.; Rizzo, D.M.; Cobb, R.C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. S. 2019, 50, 381–403. [Google Scholar] [CrossRef]
- Gray, D.R. The relationship between climate and outbreak characteristics of the spruce budworm in eastern canada. Clim. Chang. 2008, 87, 361–383. [Google Scholar] [CrossRef]
- McClory, R.W.; van Dijk, L.J.A.; Mutz, J.; Ehrlén, J.; Tack, A.J.M. Spring phenology dominates over light availability in affecting seedling performance and plant attack during the growing season. For. Ecol. Manag. 2021, 495, 119378. [Google Scholar] [CrossRef]
- Jactel, H.; Petit, J.; Desprez-Loustau, M.-L.; Delzon, S.; Piou, D.; Battisti, A.; Koricheva, J. Drought effects on damage by forest insects and pathogens: A meta-analysis. Glob. Chang. Biol. 2012, 18, 267–276. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in north america from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef]
- Wermelinger, B.; Seifert, M. Analysis of the temperature dependent development of the spruce bark beetle ips typographus (l) (col.; scolytidae). J. Appl. Entomol. 1998, 122, 185–191. [Google Scholar] [CrossRef]
- Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of emerging fungal diseases of forest trees. For. Ecol. Manag. 2016, 381, 235–246. [Google Scholar] [CrossRef]
- Battisti, A.; Marini, L.; Pitacco, A.; Larsson, S. Solar radiation directly affects larval performance of a forest insect. Ecol. Entomol. 2013, 38, 553–559. [Google Scholar] [CrossRef]
- Elad, Y.; Messika, Y.; Brand, M.; David, D.R.; Sztejnberg, A. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica 2007, 35, 285–299. [Google Scholar] [CrossRef]
- Johansson, T.; Gibb, H.; Hjältén, J.; Dynesius, M. Soil humidity, potential solar radiation and altitude affect boreal beetle assemblages in dead wood. Biol. Conserv. 2017, 209, 107–118. [Google Scholar] [CrossRef]
- Ashton, S.; Gutiérrez, D.; Wilson, R.J. Effects of temperature and elevation on habitat use by a rare mountain butterfly: Implications for species responses to climate change. Ecol. Entomol. 2009, 34, 437–446. [Google Scholar] [CrossRef]
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Zhang, H.; Zhang, H.; Tang, Z. Responses of litter decomposition and nutrient dynamics to nitrogen addition in temperate shrublands of north china. Front. Plant Sci. 2021, 11, 618675. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.R. The influence of forest composition and climate on outbreak characteristics of the spruce budworm in eastern canada. Can. J. For. Res. 2013, 43, 1181–1195. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New. Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Venette, R.C.; Cohen, S.D. Potential climatic suitability for establishment of phytophthora ramorum within the contiguous united states. For. Ecol. Manag. 2006, 231, 18–26. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest insects and climate change. Curr. Rep. 2018, 4, 35–50. [Google Scholar] [CrossRef]
- Williamson, T.; Colombo, S.; Duinker, P.; Gray, P.; Hennessey, R.; Houle, D.; Johnston, M.; Ogden, A.; Spittlehouse, D. Climate Change and Canada’S Forests: From Impacts to Adaptation; Natural Resources Canada: Ottawam, ON, Canada, 2009. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- La Porta, N.; Capretti, P.; Thomsen, I.M.; Kasanen, R.; Hietala, A.M.; Von Weissenberg, K. Forest pathogens with higher damage potential due to climate change in europe. Can. J. Plant Pathol. 2008, 30, 177–195. [Google Scholar] [CrossRef]
- Weed, A.S.; Ayres, M.P.; Hicke, J.A. Consequences of climate change for biotic disturbances in north american forests. Ecol. Monogr. 2013, 83, 441–470. [Google Scholar] [CrossRef]
- Bentz, B.J.; Duncan, J.P.; Powell, J.A. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate. Forestry 2016, 89, 271–283. [Google Scholar] [CrossRef]
- Shu-Kui, N. The effects of climatic factors on pine wilt disease. Orest Resour. Wanagement 2008, 4, 74. [Google Scholar] [CrossRef]
- Stack Whitney, K.; Meehan, T.D.; Kucharik, C.J.; Zhu, J.; Townsend, P.A.; Hamilton, K.; Gratton, C. Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. Ecol. Appl. 2016, 26, 2600–2610. [Google Scholar] [CrossRef]
- Zhao, J.; Mainwaring, D.B.; Maguire, D.A.; Kanaskie, A. Regional and annual trends in douglas-fir foliage retention: Correlations with climatic variables. For. Ecol. Manag. 2011, 262, 1872–1886. [Google Scholar] [CrossRef]
- Viovy, N. Cruncep version 7—Atmospheric forcing data for the community land model. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Toms, J.D.; Lesperance, M.L. Piecewise regression: A tool for identifying ecological thresholds. Ecology 2003, 84, 2034–2041. [Google Scholar] [CrossRef]
- Guo, J.; Gong, P.; Dronova, I.; Zhu, Z. Forest cover change in china from 2000 to 2016. Int. J. Remote Sens. 2022, 43, 593–606. [Google Scholar] [CrossRef]
- Ji, L.; Wang, Z.; Wang, X.; An, L. Forest insect pest management and forest management in china: An overview. Environ. Manag. 2011, 48, 1107–1121. [Google Scholar] [CrossRef]
- Robinet, C.; Roques, A.; Pan, H.; Fang, G.; Ye, J.; Zhang, Y.; Sun, J. Role of human-mediated dispersal in the spread of the pinewood nematode in China. PLoS ONE 2009, 4, e4646. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.; Xing-Yao, Z. Ecological control of forest pest: A new strategy for forest pest control. J. For. Res. 2005, 16, 339–342. [Google Scholar] [CrossRef]
- Ye, J. Current Status and Perspective on Forest Pests Control in China. J. Nanjing For. Univ. 2000, 43, 1–5. [Google Scholar]
- Chen, N.; Qin, F.; Zhai, Y.; Cao, H.; Zhang, R.; Cao, F. Evaluation of coordinated development of forestry management efficiency and forest ecological security: A spatiotemporal empirical study based on China’s provinces. J. Clean. Prod. 2020, 260, 121042. [Google Scholar] [CrossRef]
- CMA Climate Change Centre. Blue Book on Climate Change in China; Science Press: Beijing, China, 2021. [Google Scholar]
- Goheen, E.M.; Willhite, E.A. Field Guide to the Common Diseases and Insect Pests of Oregon and Washington Conifers (Vol. no.01-06); USDA Forest Service, Pacific Northwest Region: Portland, OR, USA, 2006. [Google Scholar]
- Feng, J.; Zhu, Y. Alien invasive plants in China: Risk assessment and spatial patterns. Biodivers. Conserv. 2010, 19, 3489–3497. [Google Scholar] [CrossRef]
- He, L.; Ji, J.; Qiu, X.; Zhang, L. Occurrence and control measures of pine wood nematode in the world. China For. Sci. Tec. 2014, 28, 8–13. [Google Scholar] [CrossRef]
- He, C. The relationship between forest disease prevalence and forest management measures. J. Green Aci. Tec. 2016, 3. [Google Scholar] [CrossRef]
- Ayres, M.P.; Lombardero, M.A.J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Fleming, R.A.; Woiwod, I.P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 2001, 3, 233–240. [Google Scholar] [CrossRef]
- Battisti, A. Forests and climate change—Lessons from insects. iForest 2008, 1, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, J.; Huang, J.; Zhang, L.; Tang, J. Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change. Forests 2023, 14, 1730. https://doi.org/10.3390/f14091730
Zhao J, Wang J, Huang J, Zhang L, Tang J. Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change. Forests. 2023; 14(9):1730. https://doi.org/10.3390/f14091730
Chicago/Turabian StyleZhao, Junhao, Jiahao Wang, Jixia Huang, Le Zhang, and Jianzhi Tang. 2023. "Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change" Forests 14, no. 9: 1730. https://doi.org/10.3390/f14091730
APA StyleZhao, J., Wang, J., Huang, J., Zhang, L., & Tang, J. (2023). Spring Temperature Accumulation Is a Primary Driver of Forest Disease and Pest Occurrence in China in the Context of Climate Change. Forests, 14(9), 1730. https://doi.org/10.3390/f14091730