Spatio-Temporal Changes in Forest Area and Its Ecosystem Service Value in Ganzi Prefecture, China, in the Period 1997–2017
Abstract
:1. Introduction
- (1)
- Identifying the spatial and temporal variations in the forest area from 1997 to 2017;
- (2)
- Revealing the temporal and spatial variations in forest ESV and making suggestions regarding forest development and management.
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data Processing and Forest Information Extraction
2.3. Forest ESV Assessment
3. Results
3.1. Changes in Forest Area
3.2. Changes in Forest ESV
4. Discussion
4.1. Effects of Forest Area Change on ESV
4.2. Suggestions
- (1)
- Protecting natural forests is more important than afforestation [55]; thus, it is recommended to focus on protecting these forests, continue to implement the national forest protection policy, and prohibit the logging of natural forests.
- (2)
- In the future, attention must be paid to the cultivation and tending of mixed forests in order to improve the biodiversity of forests.
- (3)
- Protect existing forest resources and give full attention to forests’ advantages, strengthen the prevention and management of forest diseases and insect pests, and protect against forest fires.
- (4)
- Focus on regions in which the forest area and forest ESVs have decreased.
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- De Groot, R.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Koschke, L.; Fürst, C.; Frank, S.; Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 2012, 21, 54–66. [Google Scholar] [CrossRef]
- Acharya, R.P.; Maraseni, T.; Cockfield, G. Global trend of forest ecosystem services valuation–An analysis of publications. Ecosyst. Serv. 2019, 39, 100979. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Zeng, Y.; Chen, M.; Su, F.; Cui, Y. Changes in ecosystems and ecosystem services in the guangdong-hong kong-macao greater bay area since the reform and opening up in China. Remote Sens. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Yi, F.; Yang, Q.; Wang, Z.; Li, Y.; Cheng, L.; Yao, B.; Lu, Q. Changes in Land Use and Ecosystem Service Values of Dunhuang Oasis from 1990 to 2030. Remote Sens. 2023, 15, 564. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.C.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Cheng, W.H.; Li, S.C. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Res. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 9, 1740–1746. [Google Scholar]
- Xiao, Y.; Huang, M.; Xie, G.; Zhen, L. Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the hunshandake region of China. Sci. Total Environ. 2022, 850, 158067. [Google Scholar] [CrossRef] [PubMed]
- Shuangao, W.; Padmanaban, R.; Mbanze, A.A.; Silva, J.M.N.; Shamsudeen, M.; Cabral, P.; Campos, F.S. Using Satellite Image Fusion to Evaluate the Impact of Land Use Changes on Ecosystem Services and Their Economic Values. Remote Sens. 2021, 13, 851. [Google Scholar] [CrossRef]
- Forsius, M.; Kujala, H.; Minunno, F.; Holmberg, M.; Leikola, N.; Mikkonen, N.; Autio, I.; Paunu, V.; Tanhuanpää, T.; Hurskainen, P.; et al. Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Sci. Total Environ. 2021, 775, 145847. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, Q.; Cheng, D.; Huang, Z.; Xu, C.; Yu, H.; Xiao, S. Carbon dynamics in three subtropical forest ecosystems in China. Environ. Sci. Pollut. Res. 2020, 27, 15552–15564. [Google Scholar] [CrossRef]
- Berglihn, E.C.; Gmez-Baggethun, E. Ecosystem services from urban forests: The case of oslomarka, norway. Ecosyst. Serv. 2021, 51, 101358. [Google Scholar] [CrossRef]
- Li, X.; Guo, J.; Qi, S. Forestland landscape change induced spatiotemporal dynamics of subtropical urban forest ecosystem services value in forested region of china: A case of hangzhou city. Environ. Res. 2021, 193, 110618. [Google Scholar] [CrossRef]
- Dodev, Y.; Zhiyanski, M.; Glushkova, M.; Shin, W.S. Forest welfare services—The missing link between forest policy and management in the EU. For. Policy Econ. 2020, 118, 102249. [Google Scholar] [CrossRef]
- Negi, G. Trees, forests and people: The Central Himalayan case of forest ecosystem services. Trees For. People 2022, 8, 100222. [Google Scholar] [CrossRef]
- Cao, S.; Liu, Y.; Su, W.; Zheng, X.; Yu, Z. The net ecosystem services value in mainland China. Sci. China Earth Sci. 2018, 61, 595–603. [Google Scholar] [CrossRef]
- Raum, S. The ecosystem approach, ecosystem services and established forestry policy approaches in the United Kingdom. Land Use Policy 2017, 64, 282–291. [Google Scholar] [CrossRef]
- Barua, S.K.; Boscolo, M.; Animon, I. Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies. Ecosyst. Serv. 2020, 42, 101069. [Google Scholar] [CrossRef]
- Cao, S.; Suo, X.; Xia, C.; Yu, Z.; Feng, F. Net value of forest ecosystem services in China. Ecol. Eng. 2020, 142, 105645. [Google Scholar] [CrossRef]
- Giri, C. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef]
- Bai, B.; Tan, Y.; Guo, D.; Xu, B. Dynamic Monitoring of Forest Land in Fuling District Based on Multi-Source Time Series Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2019, 8, 36. [Google Scholar] [CrossRef]
- Malandra, F.; Vitali, A.; Urbinati, C.; Weisberg, P.J.; Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Chang. 2019, 19, 1973–1985. [Google Scholar] [CrossRef]
- Abbas, S.; Nichol, J.E.; Zhang, J.; Fischer, G.A.; Irteza, S.M. Spatial and environmental constraints on natural forest regeneration in the degraded landscape of hong kong. Sci. Total Environ. 2020, 752, 141760. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956-2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of lucc on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle heihe river basin, china. Sci. Total Environ. 2015, 506–507, 259–271. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.; Annor, T. Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degrad. Dev. 2018, 29, 3331–3343. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 2017, 32, 874–885. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, T.; Ruan, G.; Song, J.; Wang, J.; Yan, G.; Mcvicar, T.R.; Yan, K.; Gao, Z.; Liu, Y.; et al. High Spatial Resolution and High Temporal Frequency (30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets: Method Development and Validation. J. Meteorol. Res. 2021, 35, 128–147. [Google Scholar] [CrossRef]
- Kivinen, S.; Koivisto, E.; Keski-Saari, S.; Poikolainen, L.; Tanhuanpää, T.; Kuzmin, A.; Viinikka, A.; Heikkinen, R.K.; Pykälä, J.; Virkkala, R.; et al. A keystone species, European aspen (Populus tremula L.), in boreal forests: Ecological role, knowledge needs and mapping using remote sensing. For. Ecol. Manag. 2020, 462, 118008. [Google Scholar] [CrossRef]
- Bell, D.M.; Acker, S.A.; Gregory, M.J.; Davis, R.J.; Garcia, B.A. Quantifying regional trends in large live tree and snag availability in support of forest management. For. Ecol. Manag. 2021, 479, 118554. [Google Scholar] [CrossRef]
- Halder, S.; Samanta, K.; Das, S.; Pathak, D. Monitoring the inter-decade spatial–temporal dynamics of the Sundarban mangrove forest of India from 1990 to 2019. Reg. Stud. Mar. Sci. 2021, 44, 101718. [Google Scholar] [CrossRef]
- Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087. [Google Scholar] [CrossRef]
- Chen, T.; Li, P.; Liu, S.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Yin, L.; Er-Fu, D.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Panigrahy, R.K.; Kale, M.P.; Dutta, U.; Mishra, A.; Singh, S. Forest cover change detection of western ghats of maharashtra using satellite remote sensing based visual interpretation technique. Curr. Sci. 2010, 98, 657–664. [Google Scholar]
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef]
- Asrat, Z.; Taddese, H.; Ørka, H.O.; Gobakken, T.; Burud, I.; Næsset, E. Estimation of Forest Area and Canopy Cover Based on Visual Interpretation of Satellite Images in Ethiopia. Land 2018, 7, 92. [Google Scholar] [CrossRef]
- Xiao, J.S.; Qiao, B.; Chen, G.Q.; Shi, F.F.; Cao, X.Y.; Zhu, C.X. Land use change and evolution of ecosystem service value in Maduo County of source region of the Yellow River. Acta Ecol. Sin. 2020, 40, 510–521. [Google Scholar]
- Wang, Y.; Zhang, X.; Peng, P. Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018. Sustainability 2021, 13, 827. [Google Scholar] [CrossRef]
- Wei, X.; Liu, R.; Liu, Y. Forest Change in China: A Review. Chin. Geogr. Sci. 2023, 33, 489–502. [Google Scholar]
- Liu, C.; Xu, L.; Li, D.; Huang, Y.; Kang, J.; Peng, B.; Huang, X.; Zhang, Z. Spatiotemporal Variations and Determinants of Supply–Demand Balance of Ecosystem Service in Saihanba Region, China. Forests 2023, 14, 1100. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; De Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; van der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multipl forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 2018, 9, 4839. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar]
- Gamfeldt, L.; Snäll, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Fröberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar]
- Tiemann, A.; Ring, I. Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. Ecol. Indic. 2022, 137, 108704. [Google Scholar]
- Torkar, G.; Krašovec, U. Students’ attitudes toward forest ecosystem services, knowledge about ecology, and direct experience with forests. Ecosyst. Serv. 2019, 37, 100916. [Google Scholar]
- Mo, L.; Liu, J.; Chen, J.; Xie, Y. Quantifying ecosystem services of dominate forests in the Beijing mountain area. Environ. Sci. Pollut. Res. 2020, 27, 27773–27785. [Google Scholar]
Band Name | Spectral Range (µm) | Resolution (m) | Main Application |
---|---|---|---|
B1-Blue | 0.45–0.52 | 30 | Water penetration and distinguishing soil and vegetation |
B2-Green | 0.52–0.60 | 30 | Distinguishing vegetation |
B3-Red | 0.63–0.69 | 30 | Observation of roads, bare soil, vegetation types, etc. |
B4-NIR | 0.76–0.90 | 30 | Biomass estimation |
B5-SWIR | 1.55–1.75 | 30 | Distinguishing roads, bare soil, water, vegetation types, etc. |
B6-LWIR | 10.40–12.5 | 120 | Sensing targets emitting thermal radiation |
B7-SWIR | 2.08–2.35 | 30 | Recognizing rocks and minerals, as well as vegetation cover and moist soil. |
Band Name | Spectral Range (µm) | Resolution (m) | Main Application |
---|---|---|---|
B1-Coastal | 0.43–0.45 | 30 | Used to observe the coastal zone |
B2-Blue | 0.45–0.51 | 30 | Used for water penetration and to distinguish soil and vegetation |
B3-Green | 0.53–0.59 | 30 | Used to distinguish vegetation |
B4-Red | 0.64–0.67 | 30 | Used to observe of roads, bare soil, vegetation types, etc. |
B5-NIR | 0.85–0.88 | 30 | Used to estimate biomass, discriminate wet soil, etc. |
B6-SWIR1 | 1.57–1.67 | 30 | Used to distinguish roads, bare soil, water, vegetation types, etc. |
B7-SWIR2 | 2.11–2.29 | 30 | Used to recognize rocks and minerals, as well as vegetation cover and moist soil |
B8-Pan | 0.50–0.68 | 15 | Black and white images at 15-m resolution used to perform enhanced resolution |
B9-Cirrus | 1.36–1.38 | 30 | Used to perform cloud detection, cloud removal, and other applications |
B10-TIRS1 | 10.6–11.19 | 100 | Targets for sensing thermal radiation |
B11-TIRS2 | 11.5–12.51 | 100 | Targets for sensing thermal radiation |
Forest Ecosystem Service | Needle-Leaf Forest | Broad-Leaf Forest | Mixed Forest |
---|---|---|---|
Food production | 0.22 | 0.29 | 0.31 |
Raw material | 0.52 | 0.66 | 0.71 |
Water supply | 0.27 | 0.34 | 0.37 |
Gas regulation | 1.70 | 2.17 | 2.35 |
Climate regulation | 5.07 | 6.5 | 7.07 |
Purify environment | 1.49 | 1.93 | 1.99 |
Hydrological regulation | 3.34 | 4.74 | 3.51 |
Soil formation | 2.06 | 2.65 | 2.86 |
Nutrient cycle | 0.16 | 0.2 | 0.22 |
Biodiversity | 1.88 | 2.41 | 2.6 |
Aesthetic landscape | 0.82 | 1.06 | 1.14 |
Total | 17.53 | 22.95 | 23.13 |
Forest | Area (km2) | Changes Rate (km2/a) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Needle-leaf forests | 17,321.51 | 18,221.99 | 22,841.89 | 90.05↑ | 461.99↑ | 276.02↑ |
Broad-leaf forests | 4639.63 | 4945.93 | 5887.61 | 30.63↑ | 94.17↑ | 62.4↑ |
Mixed forests | 83.52 | 37.73 | 45.12 | −4.58↓ | 0.74↑ | −1.92↓ |
Total | 22,044.66 | 23,205.65 | 28,774.61 | 116.1↑ | 556.9↑ | 336.5↑ |
Forest | Area (km2) | Changes Rate (km2/a) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Ganzi | 59.99 | 46.13 | 198.56 | −1.39↓ | 15.24↑ | 6.93↑ |
Seda | 94.17 | 112.35 | 301.16 | 1.82↑ | 18.88↑ | 10.35↑ |
Shiqu | 183.52 | 351.27 | 399.04 | 16.78↑ | 4.78↑ | 10.78↑ |
Luhuo | 419.96 | 373.54 | 668.15 | −4.64↓ | 29.46↑ | 12.41↑ |
Luding | 508.59 | 773.07 | 676.61 | 26.45↑ | −9.65↓ | 8.40↑ |
Dege | 563.98 | 485.75 | 1065.39 | −7.82↓ | 57.96↑ | 25.07↑ |
Daocheng | 1043.34 | 1390.03 | 1946.34 | 34.67↑ | 55.63↑ | 45.15↑ |
Derong | 1048.82 | 910.59 | 1251.41 | −13.82↓ | 34.08↑ | 10.13↑ |
Xinlong | 1125.43 | 1060.24 | 1428.20 | −6.52↓ | 36.80↑ | 15.14↑ |
Daofu | 1205.78 | 1231.55 | 1627.67 | 2.58↑ | 39.61↑ | 21.09↑ |
Baiyu | 1607.75 | 1675.89 | 1907.32 | 6.81↑ | 23.14↑ | 14.98↑ |
Batang | 1631.04 | 1590.40 | 2007.33 | −4.06↓ | 41.69↑ | 18.81↑ |
Litang | 1675.47 | 1781.81 | 2178.15 | 10.63↑ | 39.63↑ | 25.13↑ |
Xiangcheng | 1791.34 | 1847.83 | 2239.37 | 5.65↑ | 39.15↑ | 22.40↑ |
Danba | 1909.69 | 1914.46 | 2107.54 | 0.48↑ | 19.31↑ | 9.89↑ |
Jiulong | 2011.38 | 2130.04 | 2551.53 | 11.87↑ | 42.15↑ | 27.01↑ |
Kangding | 2194.07 | 2446.18 | 2542.86 | 25.21↑ | 9.67↑ | 17.44↑ |
Yajiang | 2970.32 | 3084.52 | 3678.01 | 11.42↑ | 59.35↑ | 35.38↑ |
Total | 22,044.66 | 23,205.65 | 28,774.61 | 116.10↑ | 556.90↑ | 336.50↑ |
Forest Types | ESV (×108 yuan) | Changes Rate (%) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Needle-leaf forests | 628.13 | 660.78 | 828.31 | 5.2↑ | 25.35↑ | 31.87↑ |
Broad-leaf forests | 220.27 | 234.81 | 279.51 | 6.6↑ | 19.04↑ | 26.90↑ |
Mixed forests | 4 | 1.81 | 2.16 | −54.82↓ | 19.57↑ | −45.98↓ |
Total | 852.39 | 897.39 | 1109.98 | 5.28↑ | 23.69↑ | 30.22↑ |
Ecosystem Service | ESV (×108 yuan) | Changes Rate (×108 yuan/a) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Food production | 10.72 | 11.28 | 13.96 | 0.06↑ | 0.27↑ | 0.16↑ |
Raw material | 25.09 | 26.41 | 32.68 | 0.13↑ | 0.63↑ | 0.38↑ |
Water supply | 13.00 | 13.68 | 16.93 | 0.07↑ | 0.33↑ | 0.20↑ |
Gas regulation | 82.15 | 86.47 | 106.98 | 0.43↑ | 2.05↑ | 1.24↑ |
Climate regulation | 245.27 | 258.17 | 319.39 | 1.29↑ | 6.13↑ | 3.71↑ |
Purify environment | 72.26 | 76.07 | 94.10 | 0.38↑ | 1.80↑ | 1.09↑ |
Hydrological regulation | 165.78 | 174.67 | 215.88 | 0.89↑ | 4.12↑ | 2.50↑ |
Soil conservation | 99.74 | 104.99 | 129.88 | 0.52↑ | 2.49↑ | 1.51↑ |
Nutrient cycle | 7.69 | 8.09 | 10.02 | 0.04↑ | 0.19↑ | 0.12↑ |
Biodiversity | 90.94 | 95.73 | 118.43 | 0.48↑ | 2.27↑ | 1.37↑ |
Aesthetic landscape | 39.75 | 41.84 | 51.76 | 0.21↑ | 0.99↑ | 0.60↑ |
Total | 852.39 | 897.39 | 1109.98 | 4.49↑ | 21.27↑ | 12.88↑ |
Forest | ESV (×108 yuan) | Changes Rate (×108 yuan/a) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Ganzi | 2.18 | 1.67 | 7.20 | −0.05↓ | 0.55↑ | 0.25↑ |
Seda | 3.43 | 4.10 | 10.99 | 0.07↑ | 0.69↑ | 0.38↑ |
Shiqu | 6.65 | 12.74 | 14.47 | 0.61↑ | 0.17↑ | 0.39↑ |
Luhuo | 15.45 | 13.79 | 24.59 | −0.17↓ | 1.08↑ | 0.46↑ |
Luding | 18.85 | 29.21 | 25.24 | 1.04↑ | −0.40↓ | 0.32↑ |
Dege | 20.98 | 18.23 | 39.26 | −0.28↓ | 2.10↑ | 0.91↑ |
Daocheng | 39.97 | 53.43 | 74.64 | 1.35↑ | 2.12↑ | 1.73↑ |
Derong | 38.44 | 34.23 | 46.35 | −0.42↓ | 1.21↑ | 0.40↑ |
Xinlong | 42.08 | 39.51 | 53.56 | −0.26↓ | 1.40↑ | 0.57↑ |
Daofu | 45.83 | 46.45 | 62.17 | 0.06↑ | 1.57↑ | 0.82↑ |
Baiyu | 66.18 | 68.35 | 77.99 | 0.22↑ | 0.96↑ | 0.59↑ |
Batang | 64.89 | 62.48 | 79.78 | −0.24↓ | 1.73↑ | 0.74↑ |
Litang | 62.27 | 66.10 | 80.67 | 0.38↑ | 1.46↑ | 0.92↑ |
Xiangcheng | 67.43 | 69.52 | 84.89 | 0.21↑ | 1.54↑ | 0.87↑ |
Danba | 75.99 | 76.52 | 83.75 | 0.05↑ | 0.72↑ | 0.39↑ |
Jiulong | 78.71 | 82.64 | 99.01 | 0.39↑ | 1.64↑ | 1.01↑ |
Kangding | 86.23 | 97.10 | 101.11 | 1.09↑ | 0.40↑ | 0.74↑ |
Yajiang | 116.83 | 121.32 | 144.32 | 0.45↑ | 2.30↑ | 1.37↑ |
Total | 852.39 | 897.39 | 1109.98 | 4.50↑ | 21.26↑ | 12.88↑ |
Forest | ESV density (×104 yuan/km2) | Changes Rate (×104 yuan/km2) | ||||
---|---|---|---|---|---|---|
1997 | 2007 | 2017 | 1997–2007 | 2007–2017 | 1997–2017 | |
Ganzi | 2.98 | 2.29 | 9.86 | −0.69↓ | 7.57↑ | 6.88↑ |
Seda | 3.67 | 4.39 | 11.77 | 0.72↑ | 7.38↑ | 8.10↑ |
Shiqu | 2.67 | 5.11 | 5.80 | 2.44↑ | 0.69↑ | 3.13↑ |
Luhuo | 33.58 | 29.98 | 53.43 | −3.60↓ | 23.46↑ | 19.86↑ |
Luding | 87.07 | 134.94 | 116.58 | 47.87↑ | −18.36↓ | 29.51↑ |
Dege | 19.03 | 16.54 | 35.61 | −2.50↓ | 19.08↑ | 16.58↑ |
Daocheng | 54.58 | 72.97 | 101.92 | 18.39↑ | 28.95↑ | 47.34↑ |
Derong | 131.83 | 117.39 | 158.94 | −14.44↓ | 41.56↑ | 27.11↑ |
Xinlong | 49.10 | 46.10 | 62.50 | −3.00↓ | 16.39↑ | 13.39↑ |
Daofu | 64.98 | 65.86 | 88.15 | 0.88↑ | 22.28↑ | 23.17↑ |
Baiyu | 63.72 | 65.81 | 75.09 | 2.09↑ | 9.28↑ | 11.37↑ |
Batang | 82.65 | 79.57 | 101.61 | −3.08↓ | 22.04↑ | 18.96↑ |
Litang | 44.49 | 47.22 | 57.63 | 2.74↑ | 10.41↑ | 13.15↑ |
Xiangcheng | 134.43 | 138.59 | 169.24 | 4.16↑ | 30.64↑ | 34.80↑ |
Danba | 163.20 | 164.35 | 179.87 | 1.14↑ | 15.53↑ | 16.67↑ |
Jiulong | 116.33 | 122.14 | 146.33 | 5.80↑ | 24.20↑ | 30.00↑ |
Kangding | 75.07 | 84.54 | 88.03 | 9.47↑ | 3.49↑ | 12.96↑ |
Yajiang | 154.58 | 160.51 | 190.95 | 5.93↑ | 30.44↑ | 36.37↑ |
Total | 55.71 | 58.65 | 72.55 | 2.94↑ | 13.89↑ | 16.84↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Q.; Geng, J.; Bie, X.; Peng, P.; Wu, G. Spatio-Temporal Changes in Forest Area and Its Ecosystem Service Value in Ganzi Prefecture, China, in the Period 1997–2017. Forests 2023, 14, 1731. https://doi.org/10.3390/f14091731
Wang Y, Li Q, Geng J, Bie X, Peng P, Wu G. Spatio-Temporal Changes in Forest Area and Its Ecosystem Service Value in Ganzi Prefecture, China, in the Period 1997–2017. Forests. 2023; 14(9):1731. https://doi.org/10.3390/f14091731
Chicago/Turabian StyleWang, Yanru, Qingquan Li, Jijin Geng, Xiaojuan Bie, Peihao Peng, and Guofeng Wu. 2023. "Spatio-Temporal Changes in Forest Area and Its Ecosystem Service Value in Ganzi Prefecture, China, in the Period 1997–2017" Forests 14, no. 9: 1731. https://doi.org/10.3390/f14091731
APA StyleWang, Y., Li, Q., Geng, J., Bie, X., Peng, P., & Wu, G. (2023). Spatio-Temporal Changes in Forest Area and Its Ecosystem Service Value in Ganzi Prefecture, China, in the Period 1997–2017. Forests, 14(9), 1731. https://doi.org/10.3390/f14091731