Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae)
Abstract
:1. Introduction
- (1)
- What are the seasonal and inter-annual patterns of the reproductive phenology of gibbon food species in the Hainan Tropical Rainforest National Park?
- (2)
- Are there differences in the reproductive phenology of plants of different functional groups?
- (3)
- What are the main environmental drivers of flowering and fruiting phenology in gibbon food species?
2. Materials and Methods
2.1. Study Site
2.2. Phenology Data
2.3. Meteorological Data
2.4. Data Analysis
3. Results
3.1. Phenological Patterns and Inter-Annual Variation of Gibbon Food Species
3.2. Effect of Functional Groups on Reproductive Phenology of Gibbon Food Plants
3.3. Climate Factors and the Phenology of Gibbon Food Species
4. Discussion
4.1. Seasonal Patterns of Reproductive Phenology of Gibbon Food Species
4.2. Mast Flowering and Fruiting of Gibbon Food Species
4.3. Effect of Functional Group on the Reproductive Phenology of Gibbon Food Species
4.4. Effects of Climate on the Reproductive Phenology of Gibbon Food Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valdés, A.; Ehrlén, J. Plant–animal interactions mediate climatic effects on selection on flowering time. Ecology 2021, 102, e03466. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.U.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Wang, H.; Rutishauser, T.; Dai, J. Phenological response to climate change in China: A meta-analysis. Glob. Chang. Biol. 2015, 21, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Høye, T.T.; Inouye, D.W.; Post, E. The effects of phenological mismatches on demography. Philos. T. R. Soc. B 2010, 365, 3177–3186. [Google Scholar] [CrossRef]
- Xu, H.; Detto, M.; Fang, S.; Li, Y.; Zang, R.; Liu, S. Habitat hotspots of common and rare tropical species along climatic and edaphic gradients. J. Ecol. 2015, 103, 1325–1333. [Google Scholar] [CrossRef]
- Fedriani, J.M.; Delibes, M. Seed dispersal in the Iberian pear, Pyrus bourgaeana: A role for infrequent mutualists. Ecoscience 2009, 16, 311–321. [Google Scholar] [CrossRef]
- Elzinga, J.A.; Atlan, A.; Biere, A.; Gigord, L.; Weis, A.E.; Bernasconi, G. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 2007, 22, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, N.E.; Ives, A.R. Effects of experimental shifts in flowering phenology on plant–pollinator interactions. Ecol. Lett. 2011, 14, 69–74. [Google Scholar] [CrossRef]
- Pau, S.; Wolkovich, E.M.; Cook, B.I.; Nytch, C.J.; Regetz, J.; Zimmerman, J.K.; Joseph Wright, S. Clouds and temperature drive dynamic changes in tropical flower production. Nat. Clim. Chang. 2013, 3, 838–842. [Google Scholar] [CrossRef]
- Rapp, J.M.; Mcintire, E.J.B.; Crone, E.E. Sex allocation, pollen limitation and masting in whitebark pine. J. Ecol. 2013, 101, 1345–1352. [Google Scholar] [CrossRef]
- Kelly, D.; Sork, V.L. Mast seeding in perennial plants: Why, how, where? Annu. Rev. Ecol. Evol. Syst. 2002, 33, 427–447. [Google Scholar] [CrossRef]
- Pearse, I.S.; Koenig, W.D.; Kelly, D. Mechanisms of mast seeding: Resources, weather, cues, and selection. New Phytol. 2016, 212, 546–562. [Google Scholar] [CrossRef] [PubMed]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.; Leite, P.T.; et al. Linking plant phenology to conservation biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef]
- Wright, S.J.; Calderon, O. Solar irradiance as the proximate cue for flowering in a tropical moist forest. Biotropica 2018, 50, 374–383. [Google Scholar] [CrossRef]
- Dunham, A.E.; Razafindratsima, O.H.; Rakotonirina, P.; Wright, P.C. Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica 2018, 50, 396–404. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Inouye, D. Delayed response of spring phenology to global warming in subtropics and tropics. Agr. For. Meteorol. 2017, 234, 222–235. [Google Scholar] [CrossRef]
- Azmy, M.M.; Hashim, M.; Numata, S.; Hosaka, T.; Noor, N.S.M.; Fletcher, C. Satellite-based characterization of climatic conditions before large-scale general flowering events in Peninsular Malaysia. Sci. Rep. 2016, 6, 32329. [Google Scholar] [CrossRef]
- Sun, I.F.; Chen, Y.Y.; Hubbell, S.P.; Wright, S.J.; Noor, N.S.M. Seed predation during general flowering events of varying magnitude in a Malaysian rain forest. J. Ecol. 2007, 95, 818–827. [Google Scholar] [CrossRef]
- Appanh, S. General flowering in the climax rain forests of Southeast Asia. J. Trop. Ecol. 1985, 1, 225–240. [Google Scholar] [CrossRef]
- Cannon, C.H.; Curran, L.M.; Marshall, A.J.; Leighton, M. Long-term reproductive behaviour of woody plants across seven bornean forest types in The Gunung Palung National Park (Indonesia): Suprannual synchrony, temporal productivity and fruiting diversity. Ecol. Lett. 2007, 10, 956–969. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, C.; Yang, L.; Guan, Z.; Jiang, X.; Fan, P. Asymmetric competition between sympatric endangered primates affects their population recovery. Biol. Conserv. 2020, 248, 108558. [Google Scholar] [CrossRef]
- Turvey, S.T.; Bryant, J.V.; Duncan, C.; Wong, M.H.; Guan, Z.; Fei, H.; Ma, C.; Hong, X.; Nash, H.C.; Chan, B.P.; et al. How many remnant gibbon populations are left on Hainan? Testing the use of local ecological knowledge to detect cryptic threatened primates. Am. J. Primatol. 2017, 79, e22593. [Google Scholar] [CrossRef]
- Yang, X.B.; Chen, Z.Z.; Li, D.H. Classification and distribution of vegetation in Hainan, China. Sci. Sin. Vitae 2021, 51, 321–333. [Google Scholar] [CrossRef]
- Du, Y.; Li, D.; Yang, X.; Peng, D.; Tang, X.; Liu, H.; Li, D.; Hong, X.; Song, X. Reproductive phenology and its drivers in a tropical rainforest national park in China: Implications for Hainan gibbon (Nomascus hainanus) conservation. Glob. Ecol. Conserv. 2020, 24, e01317. [Google Scholar] [CrossRef]
- Fan, K.; Xu, Y.; Liu, P.; Zang, R. Recovery of logged tropical montane rainforests as potential habitats for Hainan gibbon. Forests 2021, 12, 711. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Z.; Zang, R.; Liu, S.; Long, W.; Chen, Y.; Liu, S.; Liu, H.; Qi, X.; Feng, Y.; et al. Food plant diversity in different-altitude habitats of Hainan gibbons (Nomascus hainanus): Implications for conservation. Glob. Ecol. Conserv. 2022, 38, e02204. [Google Scholar] [CrossRef]
- Tang, W.L.; Bi, Y.; Jin, K. Composition of foraging plants of hainan gibbon in Hainan Rainforest National Park, China. Chin. J. Wildl. 2021, 42, 675–685. [Google Scholar] [CrossRef]
- Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 1994, 9, 465–470. [Google Scholar] [CrossRef]
- Cortés-Flores, J.; Hernández-Esquivel, K.; González-Rodríguez, A.; Ibarra-Manríquez, G. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. Am. J. Bot. 2017, 104, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, D.; Rapp, J.K.; Sork, V.L.; Rathcke, B.J.; Reese, G.A.; Weaver, J.C. Phenological properties of wind-and insect-pollinated prairie plants. Ecology 1981, 62, 49–56. [Google Scholar] [CrossRef]
- R CORE TEAM. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 November 2021).
- Carvalho, F.S.; Sartori, A.L. Reproductive phenology and seed dispersal syndromes of woody species in the Brazilian Chaco. J. Veg. Sci. 2015, 26, 302–311. [Google Scholar] [CrossRef]
- Corlett, R.T. Reproductive phenology of Hong Kong shrubland. J. Trop. Ecol. 1993, 9, 501–510. [Google Scholar] [CrossRef]
- Bach, T.H.; Chen, J.; Hoang, M.D.; Beng, K.C.; Nguyen, V.T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 2017, 79, e22667. [Google Scholar] [CrossRef] [PubMed]
- Brearley, F.Q.; Proctor, J.; Suriantata Nagy, L.; Dalrymple, G.; Voysey, B.C. Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. J. Ecol. 2007, 95, 828–839. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, H.X. A Comparative Study on the Tropical Rain Forests in Xishuangbanna and Hainan. Plant Divers. 2002, 24, 1–3. [Google Scholar] [CrossRef]
- Dou, L.N.; Zhang, W.F.; Deng, X.B.; Cao, M.; Tang, Y. Nine-year seed rain dynamics in Parashorea chinensis forest in Xishuangbanna, Southwest China. Biodivers. Sci. 2018, 26, 919–930. [Google Scholar] [CrossRef]
- Hu, X.L.; Chang, Z.Y.; Du, Y.J. Effects of pollination mode and fruit type on reproductive phenology of woody plants. Guihaia 2017, 37, 315–321. [Google Scholar] [CrossRef]
- Regal, P.J. Pollination by wind and animals, ecology of geographic patterns. Annu. Rev. Ecol. 1982, 13, 497–524. [Google Scholar] [CrossRef]
- Feinsinger, P. Effects of plants species on each other’s pollination: Is community structure influenced? Trends Ecol. Evol. 1987, 2, 123–126. [Google Scholar] [CrossRef]
- Du, Y.J.; Mao, L.F.; Queenborough, S.A.; Freckleton, R.P.; Chen, B.; Ma, K.P. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Glob. Ecol. Biogeogr. 2015, 24, 928–938. [Google Scholar] [CrossRef]
- Calle, Z.; Schlumpberger, B.O.; Piedrahita, L.; Leftin, A.; Hammer, S.A.; Tye, A.; Borchert, R. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees 2010, 24, 865–877. [Google Scholar] [CrossRef]
- Ashton, P.S.; Givnish, T.J.; Appanah, S. Staggered flowering in the Dipterocarpaceae: New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am. Nat. 1988, 132, 44–66. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Satake, A.; Sun, I.F.; Kosugi, Y.; Tani, M.; Numata, S.; Hubbell, S.P.; Fletcher, C.; Nur Supardi, M.N.; Wright, S.J. Species-specific flowering cues among general flowering Shorea species at the Pasoh Research Forest, Malaysia. J. Ecol. 2018, 106, 586–598. [Google Scholar] [CrossRef]
First Flowering | Peak Flowering | First Fruiting | Peak Fruiting | |
---|---|---|---|---|
CVyear | 1.726 | 1.650 | 1.068 | 1.115 |
Climate Factors | First Flowering | Time Period | Peak Flowering | Time Period | First Fruiting | Time Period | Peak Fruiting | Time Period | |
---|---|---|---|---|---|---|---|---|---|
Tmean | slope | 0.254 | Current | 0.39 | Current | 0.5919 | P2 | 0.1175 | P2 |
t | 1.026 | 1.891 | 3.455 | 0.599 | |||||
R2 | 0.001 | 0.591 | 0.211 | −0.0159 | |||||
p value | >0.05 | >0.05 | <0.01 | >0.05 | |||||
Tmax | slope | 0.286 | Current | 0.354 | Current | 0.590 | P2 | −0.166 | Current |
t | 1.193 | 1.754 | 3.538 | −0.965 | |||||
R2 | 0.010 | 0.0482 | 0.2193 | −0.002 | |||||
p value | >0.05 | >0.05 | <0.01 | >0.05 | |||||
Tmin | slope | 0.178 | Current | 0.311 | Current | 0.4995 | P2 | 0.178 | P2 |
t | 0.851 | 1.780 | 3.430 | 1.08 | |||||
R2 | −0.0068 | 0.050 | 0.2079 | 0.004 | |||||
p value | >0.05 | >0.05 | <0.01 | >0.05 | |||||
Precipitation | slope | −0.0189 | P2 | −0.0165 | P2 | 0.0009 | Current | −0.007 | Current |
t | −2.318 | −2.356 | 0.201 | −1.548 | |||||
R2 | 0.0964 | 0.10 | −0.0240 | 0.0323 | |||||
p value | <0.05 | <0.05 | >0.05 | >0.05 | |||||
Sunshine | slope | 0.0515 | Current | 0.0569 | P1 | 0.0430 | P2 | −0.005 | P2 |
t | 2.258 | 2.377 | 1.970 | −0.226 | |||||
R2 | 0.091 | 0.102 | 0.0656 | −0.237 | |||||
p value | <0.05 | <0.05 | >0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Zeng, X.; Du, Y.; Long, W. Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae). Forests 2023, 14, 1732. https://doi.org/10.3390/f14091732
Xue Q, Zeng X, Du Y, Long W. Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae). Forests. 2023; 14(9):1732. https://doi.org/10.3390/f14091732
Chicago/Turabian StyleXue, Qianhuai, Xiu Zeng, Yanjun Du, and Wenxing Long. 2023. "Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae)" Forests 14, no. 9: 1732. https://doi.org/10.3390/f14091732
APA StyleXue, Q., Zeng, X., Du, Y., & Long, W. (2023). Reproductive Phenology and Climatic Drivers of Plant Species Used as Food by the Hainan Gibbon, Nomascus hainanus (Primates: Hylobatidae). Forests, 14(9), 1732. https://doi.org/10.3390/f14091732