Effects of Temperature, Precipitation, and CO2 on Plant Phenology in China: A Circular Regression Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Descriptive Statistics in Circular Data
2.3. Circular Regression
3. Results
3.1. Descriptive Statistics
3.2. Phenological Events of Woody Plants
3.3. Phenological Events of Herbaceous Plants
4. Discussion
4.1. Effects of Temperature and Precipitation
4.2. Effects of CO2 Concentration
4.3. Circular Regression
4.4. Phenological Events
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Ecological Stations | Longitude (°) | Latitude (°) |
---|---|---|---|
ALF | Ailaoshan Forest Ecosystem Research Station | 101.0281 | 24.5450 |
BJF | Beijing Forest Ecosystem Research Station (BFERS) | 115.4300 | 39.9600 |
BNF | Xishuangbanna Tropical Rainforest Ecosystem Station | 101.2647 | 21.9269 |
CBF | Changbai Mountain Research Station of Forest Ecosystems | 128.1067 | 42.3989 |
CLD | Cele Desert Research Station | 80.7275 | 37.0208 |
DHF | Dinghushan Forest Ecosystem Research Station | 112.5494 | 23.1642 |
FKD | Fukang Desert Ecological Research Station | 87.9328 | 44.2906 |
ESD | Ordos Sandland Ecological Research Station | 110.1903 | 39.4947 |
GGF | Gongga Mountain Ecosystem Observation and Experiment Station | 101.9983 | 29.5761 |
HBG | Haibei Alpine Meadow Ecosystem Research Station | 101.3128 | 37.5608 |
HSF | Heshan Hilly Land Interdisciplinary Experimental Station | 112.9003 | 22.6797 |
HTF | Huitong National Research Station of Forest Ecosystem | 109.6053 | 26.8517 |
LZD | Linze Inland River Basin Research Station | 100.1283 | 39.3497 |
MXF | Maoxian Mountain Ecosystem Research Station | 103.8956 | 31.6961 |
NMG | Inner Mongolia Grassland Ecosystem Research Station | 116.6778 | 43.5458 |
NMD | Naiman Desertification Research Station | 120.7000 | 42.9297 |
Puding Karst Ecosystem Observation and Research Station | 105.7500 | 26.3667 | |
QYF | Qingyuan Forest Ecosystem Research Station | 124.9150 | 41.8528 |
SJM | Sanjiang Mire Wetland Experimental Station | 133.3008 | 47.3519 |
SNF | Shennongjia Biodiversity Research Station | 110.0500 | 31.3167 |
SPD | Shapotou Desert Research and Experiment Station | 105.0003 | 37.2803 |
References
- Bongaarts, J. Population growth and global warming. Popul. Dev. Rev. 1992, 18, 299. [Google Scholar] [CrossRef]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Vander-Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Snyder, R.L.; Spano, D.; Duce, P.; Cesaraccio, C. Temperature data for phenological models. Int. J. Biometeorol. 2001, 45, 178–183. [Google Scholar] [CrossRef]
- Lu, P.L.; Yu, Q.; He, Q.T. Responses of plant phenology to climatic change. Acta Ecol. Sin. 2006, 26, 923–929. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Pabon-Moreno, D.E.; Musavi, T.; Migliavacca, M.; Reichstein, M.; Römermann, C.; Mahecha, M.D. Ecosystem physio-phenology revealed using circular statistics. Biogeosciences 2020, 17, 3991–4006. [Google Scholar] [CrossRef]
- Miao, B.L.; Liang, C.Z.; Han, F.; Liang, M.; Zhang, Z. Responses of phenology to climate change over the major grassland types. Acta Ecol. Sin. 2016, 36, 7689–7701. [Google Scholar]
- Staggemeier, V.G.; Diniz-Filho, J.A.; Morellato, L.P. The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). J. Ecol. 2010, 98, 1409–1421. [Google Scholar] [CrossRef]
- Camarero, J.J.; Campelo, F.; Colangelo, M.; Colangelo, C.; Knorre, A.; Solé, G.; Rubio-Cuadrado, Á. Decoupled leaf-wood phenology in two pine species from contrasting climates: Longer growing seasons do not mean more radial growth. Agric. For. Meteorol. 2022, 327, 109223. [Google Scholar] [CrossRef]
- Song, Z.Q.; Song, X.Q.; Pan, Y.Q.; Dai, K.; Shou, J.J.; Chen, Q.; Huang, J.X.; Tang, X.R.; Huang, Z.L.; Du, Y.J. Effects of winter chilling and photoperiod on leaf-out and flowering in a subtropical evergreen broadleaved forest in China. For. Ecol. Manag. 2020, 458, 117766. [Google Scholar] [CrossRef]
- Tao, Z.X.; Wang, H.J.; Liu, Y.C.; Xu, Y.J.; Dai, J.H. Phenological response of different vegetation types to temperature and precipitation variations in northern China during 1982–2012. Int. J. Remote Sens. 2017, 38, 3236–3252. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.Y.; Xu, M.J.; Zhao, G.; Chen, N.; Zheng, Z.T.; Zhu, J.T.; Ji, X.M.; Wang, D.F.; Zhang, Y.J. Joint control of alpine meadow productivity by plant phenology and photosynthetic capacity. Agric. For. Meteorol. 2022, 325, 109135. [Google Scholar] [CrossRef]
- Hu, X.L.; Chang-Yang, C.H.; Mi, X.C.; Du, Y.J.; Chang, Z.J. Influence of climate, phylogeny, and functional traits on flowering phenology in a subtropical evergreen broad-leaved forest, East China. Biodivers. Sci. 2015, 23, 601. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhou, G.S.; Zhou, M.Z.; Lyu, X.M.; Zhou, L.; Ji, Y.H. Photosynthetically physiological mechanism of Stipa krylovii withered and yellow phenology response to precipitation under the background of warming. J. Appl. Ecol. 2021, 32, 845–852. [Google Scholar]
- Wyver, C.; Potts, S.G.; Edwards, R.; Edwards, M.; Senapathi, D. Climate driven shifts in the synchrony of apple (Malus x domestica Borkh.) flowering and pollinating bee flight phenology. Agric. For. Meteorol. 2023, 329, 109281. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; LeCain, D.R.; McMaster, G.S. Five years of phenology observations from a mixed-grass prairie exposed to warming and elevated CO2. Sci. Data 2016, 3, 160088. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Dang, Q.L.; Man, R.; Tedla, B. Photoperiod, CO2 and soil moisture interactively affect phenology in trembling aspen: Implications to climate change-induced migration. Environ. Exp. Bot. 2020, 180, 104269. [Google Scholar] [CrossRef]
- Kumar, S.; Chaitanya, B.S.; Ghatty, S.; Reddy, A.R. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. Physiol. Plant. 2014, 152, 501–519. [Google Scholar] [CrossRef]
- Li, L.; Manning, W.; Wang, X. Effects of elevated CO2 concentrations on leaf senescence and late-season net photosynthesis of red maple (Acer rubrum). Water Air Soil Pollut. 2020, 231, 467. [Google Scholar] [CrossRef]
- Rice, K.; Montgomery, R.; Stefanski, A.; Rich, R.; Reich, P. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. Am. J. Bot. 2018, 105, 851–861. [Google Scholar] [CrossRef]
- Hovenden, M.J.; Newton, P.C.; Wills, K.E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 2014, 511, 583–586. [Google Scholar] [CrossRef]
- Morente-López, J.; Lara-Romero, C.; Ornosa, C.; Iriondo, J.M. Phenology drives species interactions and modularity in a plant-flower visitor network. Sci. Rep. 2018, 8, 9386. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Ciais, P.; Xiao, X.M.; Luo, Y.Q.; Caylor, K.K.; Huang, Y.F.; Wang, G.Q. Dominant role of plant physiology in trend and variability of gross primary productivity in North America. Sci. Rep. 2017, 7, 41366. [Google Scholar] [CrossRef]
- Morellato, L.C.; Alberti, L.F.; Hudson, I.L. Applications of circular statistics in plant phenology: A case studies approach. In Phenological Research; Springer: Dordrecht, The Netherlands, 2010; pp. 339–359. [Google Scholar]
- Pewsey, A.; Neuhäuser, M.; Ruxton, G.D. Circular statistics in R; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Mardia, K.V.; Jupp, P.E. Directional Statistics; Wiley Online Libr.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Morellato, L.C.; Talora, D.C.; Takahasi, A.; Bencke, C.C.; Romera, E.C.; Zipparro, V.B. Phenology of Atlantic rain forest trees: A comparative study1. Biotropica 2000, 32, 811–823. [Google Scholar] [CrossRef]
- Staggemeier, V.G.; Camargo, M.G.; Diniz-Filho, J.A.; Freckleton, R.; Jardim, L.; Morellato, L.P. The circular nature of recurrent life cycle events: A test comparing tropical and temperate phenology. J. Ecol. 2020, 108, 393–404. [Google Scholar] [CrossRef]
- Ting, S.; Hartley, S.; Burns, K.C. Global patterns in fruiting seasons. Glob. Ecol. Biogeogr. 2008, 17, 648–657. [Google Scholar] [CrossRef]
- Maya-Manzano, J.M.; Sadyś, M.; Tormo-Molina, R.; Fernández-Rodríguez, S.; Oteros, J.; Silva-Palacios, I.; Gonzalo-Garijo, A. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Sci. Total Environ. 2017, 584, 603–613. [Google Scholar] [CrossRef]
- Rafter, M.A.; Ridley, A.W.; Daglish, G.J.; Burrill, P.R.; Walter, G.H. Flight directionality of Tribolium castaneum soon after take-off under glasshouse and field conditions. Entomol. Exp. Appl. 2015, 156, 178–186. [Google Scholar] [CrossRef]
- Galetti, M.; Camargo, H.; Siqueira, T.; Keuroghlian, A.; Donatti, C.; Jorge, M.L.; Pedrosa, F.; Kanda, C.Z.; Ribeiro, M.C. Diet overlap and foraging activity between feral pigs and native peccaries in the Pantanal. PLoS ONE 2015, 10, e0141459. [Google Scholar] [CrossRef]
- Geisler-Lee, J.; Liu, X.; Rang, W.; Raveendiran, J.; Szubryt, M.B.; Gibson, D.J.; Geisler, M.; Cheng, Q. Image-based analysis to dissect vertical distribution and horizontal asymmetry of conspecific root system interactions in response to planting densities, nutrients and root exudates in Arabidopsis thaliana. Plants 2017, 6, 46. [Google Scholar] [CrossRef]
- Song, C.Y.; Zhang, L.; Wu, D.X.; Bai, F.; Feng, J.; Feng, L.; Du, M.W. Plant phenological observation dataset of the Chinese Ecosystem Research Network (2003–2015). Sci. Data Bank 2017, 2. [Google Scholar] [CrossRef]
- NOAA Physical Sciences Laboratory. National Centers for Environmental Prediction. Available online: https://psl.noaa.gov/data/gridded/data.ncep.html (accessed on 11 December 2021).
- NOAA Physical Sciences Laboratory. Climate Prediction Center. Available online: https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html (accessed on 11 December 2021).
- Hou, W.; Jin, J.; Yan, T.; Liu, Y. Global Atmospheric Carbon Dioxide Concentration Simulation Grid Dataset (1992–2020). Digit. J. Glob. Change Data Repos. 2021, 9, 83. [Google Scholar] [CrossRef]
- Fisher, N.I.; Lee, A.J. Regression models for an angular response. Biometrics 1992, 48, 665–677. [Google Scholar] [CrossRef]
- Green, P.J. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. R. Stat. Soc. Ser. B 1984, 46, 149–170. [Google Scholar] [CrossRef]
- Agostinelli, C.; Lund, U. R Package ‘Circular’: Circular Statistics (version 0.5-0). 2023. Available online: https://cran.r-project.org/package=circular (accessed on 1 April 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org (accessed on 1 April 2023).
- Jongen, M.; Hellmann, C.; Unger, S. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland. Ecol. Evol. 2015, 5, 4246–4262. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X. Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern China. Glob. Change Biol. 2013, 19, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Anthelme, F.; Cavieres, L.; Dangles, O. Facilitation among plants in alpine environments in the face of climate change. Front. Plant Sci. 2014, 5, 387. [Google Scholar] [CrossRef]
- Li, Z.; He, L.; Zhang, H.; Urrutia-Cordero, P.; Ekvall, M.; Hollander, J.; Hansson, L. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Glob. Change Biol. 2017, 23, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Stinson, K.; Albertine, J.; Seidler, T.; Rogers, C. Elevated CO2 boosts reproduction and alters selection in northern but not southern ecotypes of allergenic ragweed. Am. J. Bot. 2017, 104, 1313–1322. [Google Scholar] [CrossRef]
- Fowler, M.; Kooperman, G.; Randerson, J.; Pritchard, M. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 2019, 9, 873–879. [Google Scholar] [CrossRef]
- Allen, L.; Kimball, B.; Bunce, J.; Yoshimoto, M.; Harazono, Y.; Baker, J.; Boote, K.; White, J. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield. Agric. For. Meteorol. 2020, 284, 107899. [Google Scholar] [CrossRef]
- Johnston, A.; Reekie, E. Regardless of whether rising atmospheric carbon dioxide levels increase air temperature, flowering phenology will be affected. Int. J. Plant Sci. 2008, 169, 1210–1218. [Google Scholar] [CrossRef]
- Schädler, M.; Roeder, M.; Brandl, R.; Matthies, D. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob. Change Biol. 2007, 13, 1005–1015. [Google Scholar] [CrossRef]
- Osada, N.; Onoda, Y.; Hikosaka, K. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan. Oecologia 2010, 164, 41–52. [Google Scholar] [CrossRef]
- Song, Q.; Srinivasan, V.; Long, S.; Zhu, X. Decomposition analysis on soybean productivity increase under elevated CO2 using 3D canopy model reveals synergistic effects of CO2 and light in photosynthesis. Ann. Bot. 2019, 26, 601–614. [Google Scholar]
- Lewis, J.; Wang, X.; Griffin, K.; Tissue, D. Age at flowering differentially affects vegetative and reproductive responses of a determinate annual plant to elevated carbon dioxide. Oecologia 2003, 135, 194–201. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO2 further lengthens growing season under warming conditions. Nature 2014, 510, 259–262. [Google Scholar] [CrossRef]
- Sigut, J.; Nuñez, O.; Fumero, F.; González, M.; Arnay, R. Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images. PeerJ 2017, 5, e3763. [Google Scholar] [CrossRef]
- Lepš, J.; Májeková, M.; Vítová, A.; Doležal, J.; Bello, F. Stabilizing effects in temporal fluctuations: Management, traits, and species richness in high-diversity communities. Ecology 2018, 99, 360–371. [Google Scholar] [CrossRef]
- Tachiki, Y.; Iwasa, Y.; Satake, A. Pollinator coupling can induce synchronized flowering in different plant species. J. Theor. Biol. 2010, 267, 153–163. [Google Scholar] [CrossRef]
- Kaldun, B.; Otti, O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 2016, 6, 2548–2558. [Google Scholar] [CrossRef]
- Fu, Y.; Piao, S.; Delpierre, N.; Hao, F.; Hänninen, H.; Liu, Y.; Sun, W.; Janssens, I.; Campioli, M. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 2018, 24, 2159–2168. [Google Scholar] [CrossRef]
- Herrero, A.; Zamora, R. Plant Responses to Extreme Climatic Events: A field test of resilience capacity at the southern range edge. PLoS ONE 2014, 9, e87842. [Google Scholar] [CrossRef] [PubMed]
- Harrington, C.; Gould, P. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Front. Plant Sci. 2015, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Phenology: Interactions of climate change and species. Nature 2016, 535, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y. Impact of grazing intensities on reproduction patterns of elm trees (Ulmus pumila) in degraded sandy lands in China. PeerJ 2020, 8, e9013. [Google Scholar] [CrossRef]
- Ettinger, A.; Gee, S.; Wolkovich, E. Phenological sequences: How early-season events define those that follow. Am. J. Bot. 2018, 105, 1771–1780. [Google Scholar] [CrossRef]
Variables | Budburst | Leaf Unfolding | First Flowering | Peak Flowering | Fruit Maturity | Autumn Coloring | Leaf Fall |
---|---|---|---|---|---|---|---|
Mean date | 1 February–3 May | 4 March–22 May | 28 March–18 June | 15 April–9 July | 3 June–17 September | 12 September–30 November | 25 September–12 December |
Mean angle () | 31.98–121.42 | 62.21–139.99 | 86.04–164.09 | 103.27–202.15 | 152.32–256.07 | 251.89–329.2 | 264.57–340.81 |
Median angle () | 40.44–118.36 | 61.15–140.05 | 85.59–172.93 | 113.42–218.96 | 142.03–263.34 | 254.47–329.42 | 265.32–344.22 |
Mean vector length () | 0.76–0.99 | 0.76–0.99 | 0.55–0.99 | 0.53–0.99 | 0.26–0.92 | 0.88–0.99 | 0.81–0.98 |
Standard deviation () | 0.06–0.49 | 0.06–0.49 | 0.06–0.67 | 0.06–0.68 | 0.28–0.86 | 0.06–0.35 | 0.12–0.44 |
Variables | Budburst | Flowering | Fruiting | Seed Dispersal | Senescence |
---|---|---|---|---|---|
Mean date | 22 February–4 June | 11 May–22 July | 11 June–17 September | 30 June–30 October | 20 July–20 December |
Mean angle () | 51.89–152.45 | 128.85–200.4 | 159.71–256.55 | 178.6–299.29 | 198.62–349.51 |
Median angle () | 47.34–182.47 | 127.23–212.05 | 150.9–271.73 | 159.78–300.16 | 179.51–359.01 |
Mean vector length () | 0.72–0.99 | 0.47–0.95 | 0.5–0.95 | 0.55–0.96 | 0.65–0.98 |
Standard deviation () | 0.03–0.53 | 0.23–0.73 | 0.22–0.7 | 0.2–0.67 | 0.13–0.59 |
Events | μ | Parameters | Estimate | S.E. | t-Value | p |
---|---|---|---|---|---|---|
temp | −0.065 | 0.005 | 12.036 | <0.001 | ||
Budburst | 1.542 | prec | −0.055 | 0.005 | 10.366 | <0.001 |
CO2 | 0.002 | 0.004 | 0.573 | 0.283 | ||
temp | −0.097 | 0.006 | 16.030 | <0.001 | ||
Leaf_Unfolding | 1.717 | prec | −0.082 | 0.006 | 13.730 | <0.001 |
CO2 | −0.050 | 0.005 | 10.980 | <0.001 | ||
temp | −0.062 | 0.008 | 7.790 | <0.001 | ||
First_Flowering | 2.049 | prec | −0.096 | 0.008 | 12.391 | <0.001 |
CO2 | 0.002 | 0.006 | 0.326 | 0.372 | ||
temp | −0.047 | 0.008 | 5.648 | <0.001 | ||
Peak_Flowering | 2.252 | prec | −0.092 | 0.008 | 11.384 | <0.001 |
CO2 | 0.001 | 0.007 | 0.111 | 0.456 | ||
temp | 0.062 | 0.014 | 4.594 | <0.001 | ||
Fruit_Maturity | −2.801 | prec | 0.062 | 0.013 | 4.662 | <0.001 |
CO2 | 0.150 | 0.011 | 14.060 | <0.001 | ||
temp | 0.229 | 0.007 | 31.440 | <0.001 | ||
Autumn_Coloring | −1.001 | prec | 0.147 | 0.007 | 21.188 | <0.001 |
CO2 | −0.004 | 0.006 | 0.769 | 0.221 | ||
temp | 0.326 | 0.009 | 35.812 | <0.001 | ||
Leaf_Fall | −0.529 | prec | 0.191 | 0.008 | 23.435 | <0.001 |
CO2 | −0.006 | 0.007 | 0.869 | 0.192 |
Events | μ | Parameters | Estimate | S.E. | t-Value | p |
---|---|---|---|---|---|---|
temp | −0.070 | 0.008 | 8.373 | <0.001 | ||
Budburst | 1.638 | prec | −0.117 | 0.008 | 13.969 | <0.001 |
CO2 | −0.054 | 0.006 | 8.463 | <0.001 | ||
temp | −0.030 | 0.012 | 2.450 | <0.001 | ||
Flowering | 2.629 | prec | −0.227 | 0.013 | 17.653 | <0.001 |
CO2 | −0.005 | 0.010 | 0.517 | 0.302 | ||
temp | 0.076 | 0.015 | 5.140 | <0.001 | ||
Fruiting | −2.816 | prec | −0.142 | 0.015 | 9.622 | <0.001 |
CO2 | 0.014 | 0.011 | 1.234 | 0.109 | ||
temp | 0.254 | 0.017 | 14.994 | <0.001 | ||
Seed_dispersal | −1.806 | prec | 0.107 | 0.016 | 6.720 | <0.001 |
CO2 | −0.058 | 0.013 | 4.574 | <0.001 | ||
temp | 0.311 | 0.011 | 27.600 | <0.001 | ||
Senescence | −1.070 | prec | 0.312 | 0.011 | 27.601 | <0.001 |
CO2 | −0.034 | 0.009 | 3.973 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhou, W.; Du, Y. Effects of Temperature, Precipitation, and CO2 on Plant Phenology in China: A Circular Regression Approach. Forests 2023, 14, 1844. https://doi.org/10.3390/f14091844
Tang Y, Zhou W, Du Y. Effects of Temperature, Precipitation, and CO2 on Plant Phenology in China: A Circular Regression Approach. Forests. 2023; 14(9):1844. https://doi.org/10.3390/f14091844
Chicago/Turabian StyleTang, Yi, Wenhao Zhou, and Yi Du. 2023. "Effects of Temperature, Precipitation, and CO2 on Plant Phenology in China: A Circular Regression Approach" Forests 14, no. 9: 1844. https://doi.org/10.3390/f14091844
APA StyleTang, Y., Zhou, W., & Du, Y. (2023). Effects of Temperature, Precipitation, and CO2 on Plant Phenology in China: A Circular Regression Approach. Forests, 14(9), 1844. https://doi.org/10.3390/f14091844