Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Plots
2.2. Environmental Data
2.3. Sample Collection, Preparation, and Wood Anatomical Analysis
2.4. Data Analysis
3. Results
3.1. Wood Anatomy
3.2. Percentage of Axial Parenchyma
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verrall, B.; Pickering, C.M. Alpine vegetation in the context of climate change: A global review of past research and future directions. Sci. Total Environ. 2020, 748, 141344. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J.L.; Coldea, G.; Dick, J.; Erschbamer, B.; Fernández Calzado, M.R.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Grabherr, G.; Gottfried, M.; Pauli, H. Climate change impacts in alpine environments. Geogr. Compass 2010, 4, 1133–1153. [Google Scholar] [CrossRef]
- Gruber, A.; Oberhuber, W.; Wieser, G. Treeline-Quo Vadis? An Ecophysiological Approach. Forests 2022, 13, 857. [Google Scholar] [CrossRef]
- Gehring-Fasel, J.; Gusian, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment. J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Francon, L.; Roussel, E.; Lopez-Saez, J.; Saulnier, M.; Stoffel, M.; Corona, C. Alpine shrubs have benefited more than trees from 20th century warming at a treeline ecotone site in the French Pyrenees. Agric. For. Meteorol. 2023, 329, 109284. [Google Scholar] [CrossRef]
- Bühlmann, T.; Körner, C.; Hiltbrunner, E. Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 2016, 19, 968–985. [Google Scholar] [CrossRef]
- Dullinger, S.; Dirnböck, T.; Grabherr, G. Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct. Antarct. Alp. Res. 2003, 35, 434–441. [Google Scholar] [CrossRef]
- Oberhuber, W.; Wieser, G.; Bernich, F.; Gruber, A. Radial stem growth of the clonal shrub Alnus alnobetula at treeline is constrained by summer temperature and winter desiccation and differs in carbon allocation strategy compared to co-occurring Pinus cembra. Forests 2022, 13, 440. [Google Scholar] [CrossRef]
- Bühlmann, T.; Hiltbrunner, E.; Körner, C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 2014, 124, 187–191. [Google Scholar] [CrossRef]
- Anthelme, F.; Villaret, J.C.; Brun, J.J. Shrub encroachment in the Alps gives rise to the convergence of sub-alpine communities on a regional scale. J. Veg. Sci. 2007, 18, 355–362. [Google Scholar] [CrossRef]
- Hantemirova, E.; Marchuk, E. Phylogeography and genetic structure of a subarctic-alpine shrub species, Alnus alnobetula (Ehrh.) K. Koch s. l., inferred from chloroplast DNA markers. Tree Genet. Genomes 2021, 17, 18. [Google Scholar] [CrossRef]
- Richard, L. Ecologie de l’Aulne Vert (Alnus viridis Chaix): Facteurs climatiques et édaphiques. Doc. Carte. Veg. Alpes. 1968, 6, 107–158. [Google Scholar]
- Schröter, C. Das Pflanzenleben der Alpen: Eine Schilderung der Hochgebirgsflora; Albert Raustein: Zürich, Switzerland, 1908. [Google Scholar]
- Caviezel, C.; Hunziker, M.; Kuhn, N.J. Green alder encroachment in the European Alps: The need for analyzing the spread of a native-invasive species across spatial data. Catena 2017, 159, 149–158. [Google Scholar] [CrossRef]
- Van den Bergh, T.; Körner, C.; Hiltbrunner, E. Alnus shrub expansion increases evapotranspiration in the Swiss Alps. Reg. Environ. Chang. 2018, 18, 1375–1385. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Yepez, E.A. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytolog. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Körner, C.; Jussel, U.; Schiffer, K. Transpiration, diffusionswiderstand und wasserpotential in verschiedenen schichten eines grünerlenbestandes. In Ökologische Analysen von Almflächen im Gasteiner Tal. Veröffentlichungen des Österreichischen MaB-Hochgebirgsprogramms Hohe Tauern, Band 2; Cernusca, A., Ed.; Universitätsverlag Wagner: Innsbruck, Austria, 1978; pp. 81–98. [Google Scholar]
- Sade, N.; Gebremedhin, A.; Moshelion, M. Risk-taking plants: Anisohydric behavior as a stress-resistance trait. Plant Signal. Behav. 2012, 7, 767–770. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Börner, A.; Schulze, E.D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 1. [Google Scholar]
- Arnič, D.; Gričar, J.; Jevšenak, J.; Božič, G.; von Arx, G.; Prislan, P. Different wood anatomical and growth responses in European beech (Fagus sylvatica L.) at three forest sites in Slovenia. Front. Plant Sci. 2021, 12, 669229. [Google Scholar] [CrossRef]
- Giagli, K.; Gričar, J.; Vavrčík, H.; Menšík, L.; Gryc, V. The effects of drought on wood formation in Fagus sylvatica during two contrasting years. IAWA J. 2016, 37, 332–348. [Google Scholar] [CrossRef]
- Schume, H.; Grabner, M.; Eckmüllner, O. The influence of an altered groundwater regime on vessel properties of hybrid poplar. Trees 2004, 18, 184–194. [Google Scholar] [CrossRef]
- Hacke, U.G.; Lachenbruch, B.; Pittermann, J.; Mayr, S.; Domec, J.-C.; Schulte, P.J. The Hydraulic Architecture of Conifers BT—Functional and Ecological Xylem Anatomy; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chambi-Legoas, R.; Tomazello-Filho, M.; Laclau, J.P.; Chaix, G. Potassium fertilization enhances xylem plasticity and growth recovery of Eucalyptus grandis trees in response to drastic changes in water availability. For. Ecol. Manag. 2023, 528, 120656. [Google Scholar] [CrossRef]
- Chenlemuge, T.; Schuldt, B.; Dulamsuren, C.; Hertel, D.; Leuschner, C.; Hauck, M. Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates. Trees 2015, 29, 623–636. [Google Scholar] [CrossRef]
- Schuldt, B.; Knutzen, F.; Delzon, S.; Jansen, S.; Müller-Haubold, H.; Burlett, R.; Leuschner, C. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol. 2016, 210, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.G.; Hacke, U.G.; Hamann, A. Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree. Funct. Ecol. 2015, 29, 1392–1401. [Google Scholar] [CrossRef]
- Montwé, D.; Spiecker, H.; Hamann, A. An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates. Trees 2014, 28, 891–900. [Google Scholar] [CrossRef]
- Sterck, F.J.; Zweifel, R.; Sass-Klaassen, U.; Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 2008, 28, 529–536. [Google Scholar] [CrossRef]
- Bader, M.K.F.; Scherrer, D.; Zweifel, R.; Körner, C. Less pronounced drought responses in ring-porous than in diffuse-porous temperate tree species. Agric. For. Meteorol. 2022, 327, 109184. [Google Scholar] [CrossRef]
- Kiorapostolou, N.; Da Sois, L.; Petruzzellis, F.; Savi, T.; Trifilò, P.; Nardini, A.; Petit, G. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. Tree Physiol. 2019, 39, 1675–1684. [Google Scholar] [CrossRef]
- Slupianek, A.; Dolzblasz, A.; Sokołowska, K. Xylem parenchyma—Role and relevance in wood functioning in trees. Plants 2021, 10, 1247. [Google Scholar] [CrossRef]
- Hearn, D.J.; Poulsen, S.; Spicer, R. The evolution of growth forms with expanded root and shoot parenchymatous storage is correlated across the eudicots. Int. J. Plant Sci. 2013, 174, 1049–1061. [Google Scholar] [CrossRef]
- Sevanto, S.; Hölttä, T.; Holbrook, N.M. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ. 2011, 34, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Höltta, T.; Vesala, T.; Sevanto, S.; Peramaki, M.; Nikinmaa, E. Modeling xylem and phloem water flows in trees according to cohesion theory and Munch hypothesis. Trees 2006, 20, 67–78. [Google Scholar] [CrossRef]
- Morris, H.; Gillingham, M.A.; Plavcová, L.; Gleason, S.M.; Olson, M.E.; Coomes, D.A.; Fichtler, E.; Klepsch, M.M.; Martínez-Cabrera, H.I.; McGlinn, D.J.; et al. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ. 2018, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.; Plavcová, L.; Cvecko, P.; Fichtler, E.; Gillingham, M.A.; Martínez-Cabrera, H.I.; Jansen, S. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 2016, 209, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R. Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting long-distance transport. J. Exp. Bot. 2014, 65, 1829–1848. [Google Scholar] [CrossRef] [PubMed]
- Höll, W. Distribution, fluctuation and metabolism of food reserves in the wood of trees. In Cell and Molecular Biology of Wood Formation; Savidge, R., Barnett, J., Napier, R., Eds.; BIOS Scientific Publishers: Oxford, UK, 2000; pp. 347–362. [Google Scholar]
- Secchi, F.; Zwieniecki, M.A. Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling. Plant Cell Environ. 2011, 34, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Salleo, S.; Trifilò, P.; Esposito, S.; Nardini, A.; Gullo, M.A.L. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair? Funct. Plant Biol. 2009, 36, 815–825. [Google Scholar] [CrossRef]
- Aritsara, A.N.A.; Razakandraibe, V.M.; Ramananantoandro, T.; Gleason, S.M.; Cao, K.F. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. New Phytol. 2021, 229, 1467–1480. [Google Scholar] [CrossRef]
- Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol. 2013, 198, 1143–1154. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef]
- Alves, E.S.; Angyalossy-Alfonso, V. Ecological trends in the wood anatomy of some Brazilian species. 2. Axial parenchyma, rays and fibres. IAWA J. 2002, 23, 391–418. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Baas, P. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA J. 1991, 12, 275–318. [Google Scholar] [CrossRef]
- Tollmann, A. Geologie von Österreich; Band 1. Die Zentralalpen; Deuticke: Wien, Austria, 1977. [Google Scholar]
- FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 1998. [Google Scholar]
- Neuwinger, I. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitteilungen Ostalpin Dinarischen Ges. Veg. 1970, 11, 135–150. [Google Scholar]
- Richner, H.; Hächler, P. Understanding and forecasting Alpine foehn. In Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Chow, F.K., De Wekker, S.F.J., Snyder, B.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 219–260. [Google Scholar]
- Oberhuber, W.; Dobler, A.-L.; Heinzle, T.; Scandurra, F.; Gruber, A.; Wieser, G. Climate overrides the influence of microsite conditons on radial growth of the tall multi-stemmed shrub Alnus alnobetula at treeline. Plants 2023, 12, 1708. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.M.; Anfodillo, T.; Gleason, M.S.; McCulloh, K.A. Tip-to-base xylem conduit widening as an adaptation: Causes, consequences, and empirical priorities. New Phytol. 2020, 229, 1877–1893. [Google Scholar] [CrossRef] [PubMed]
- McCulloh, K.A.; Sperry, J.S. Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol. 2005, 25, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Anfodillo, T.; Carraro, V.; Carrer, M.; Fior, C.; Rossi, S. Convergent tapering of xylem conduits in different woody species. New Phytol. 2006, 169, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, F.C.; Clearwater, M.J.; Goldstein, G. Water transport in trees: Current perspectives, new insights and some controversies. Environ. Exp. Bot. 2001, 45, 239–262. [Google Scholar] [CrossRef]
- Hietz, P.; Rungwattana, K.; Scheffknecht, S.; George, J.P. Effects of Provenance, Growing Site, and Growth on Quercus robur Wood Anatomy and Density in a 12-Year-Old Provenance Trial. Front. Plant Sci. 2022, 13, 795941. [Google Scholar] [CrossRef]
- George, J.P.; Theroux-Rancourt, G.; Rungwattana, K.; Scheffknecht, S.; Momirovic, N.; Neuhauser, L.; Hietz, P. Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evol. Appl. 2020, 13, 2422–2438. [Google Scholar] [CrossRef]
- Bayramzadeh, V.; Funada, R.; Kubo, T. Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in Fagus crenata seedlings originating from different provenances. Trees 2008, 22, 217–224. [Google Scholar] [CrossRef]
- Schymanski, S.J.; Or, D. Wind increases leaf water use efficiency. Plant Cell Environ. 2016, 39, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer: New York, NY, USA, 2003. [Google Scholar]
- Rathgeber, C.B.K.; Perez-de-Lis, G.; Fernandez-de-Una, L.; Fonti, P.; Rossi, S.; Treydte, K.; Ponton, S. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses; Siegwolf, R.T.W., Brooks, J.R., Roden, J., Saurer, M., Eds.; Springer International: Cham, Switzerland, 2022; pp. 61–99. [Google Scholar]
- Chaffey, N.J. (Ed.) Wood Formation in Trees—Cell and Molecular Biology Techniques; Taylor and Francis: London, UK; New York, NY, USA, 2002; p. 364. [Google Scholar]
- Donaldson, L.A. Lignification and lignin topochemistry—An ultrastructural view. Phytochemistry 2001, 57, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Cabon, A.; Fernandez-de-Una, L.; Gea-Izquierdo, G.; Meinzer, F.C.; Woodruff, D.R.; Martınez-Vilalta, J.; de Caceres, M. Water potential control of turgor driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytol. 2020, 225, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Fromm, J. Xylem development in trees: From cambial divisions to mature wood cells. In Cellular Aspects of Wood Formation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–39. [Google Scholar]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Strobl, S.; Veit, B.; Oberhuber, W. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol. 2010, 30, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Balducci, L.; Cuny, H.E.; Rathgeber, C.B.K.; Deslauriers, A.; Giovannelli, A.; Rossi, S. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant Cell Environ. 2016, 39, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Simard, S.; Rathgeber, C.B.K.; Deslauriers, A.; De Zan, C. Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees 2009, 23, 85–93. [Google Scholar] [CrossRef]
- Nonami, H.; Boyer, J.S. Turgor and growth at low water potentials. Plant Physiol. 2008, 89, 798–804. [Google Scholar] [CrossRef]
- Hacke, U.G.; Spicer, R.; Schreiber, S.G.; Plavcová, L. An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ. 2017, 40, 831–845. [Google Scholar] [CrossRef]
- Plavcova, L.; Hacke, U.G. Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. J. Exp. Bot. 2012, 63, 6481–6491. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Barigah, T.; Badel, E.; Cochard, H.; Herbette, S. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiol. Plant. 2010, 139, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Noyer, E.; Stojanović, M.; Horáček, P.; Pérez-de-Lis, G. Toward a better understanding of angiosperm xylogenesis: A new method for a cellular approach. New Phytol. 2023, 239, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Hajek, P.; Kurjak, D.; von Wühlisch, G.; Delzon, S.; Schuldt, B. Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Front. Plant Sci. 2016, 7, 791. [Google Scholar] [CrossRef] [PubMed]
- Oladi, R.; Bräuning, A.; Pourtahmasi, K. “Plastic” and “static” behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees 2014, 28, 493–502. [Google Scholar] [CrossRef]
- Buttò, V.; Rozenberg, P.; Deslauriers, A.; Rossi, S.; Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 2021, 230, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.; Rathgeber, C.; Fournier, M.; Moulia, B. Modelling wood formation and structure: Power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. Ann. For. Sci. 2017, 74, 1–15. [Google Scholar] [CrossRef]
- Rosell, J.A.; Olson, M.E.; Anfodillo, T. Scaling of xylem vessel diameter with plant size: Causes, predictions, and outstanding questions. Curr. For. Rep. 2017, 3, 46–59. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Wood Structure and Environment; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bosshard, H. Holzkunde. Band 1: Mikroskopie und Makroskopie des Holzes; Birkhauser: Basel, Switzerland, 1982. [Google Scholar]
- Carlquist, S. Comparative Wood Anatomy; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Schenk, H.J.; Jansen, S.; Hölttä, T. Positive pressure in xylem and its role in hydraulic function. New Phytol. 2021, 230, 27–45. [Google Scholar] [CrossRef]
- Jupa, R.; Plavcová, L.; Gloser, V.; Jansen, S. Linking xylem water storage with anatomical parameters in five temperate tree species. Tree Physiol. 2016, 36, 756–769. [Google Scholar] [CrossRef]
- Holbrook, N.M. Stem water storage. In Plant Stems: Physiology and Functional Morphology; Academic Press: San Diego, CA, USA, 1995; pp. 151–174. [Google Scholar]
- Meinzer, F.C.; Johnson, D.M.; Lachenbruch, B.; McCulloh, K.A.; Woodruff, D.R. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 2009, 23, 922–930. [Google Scholar] [CrossRef]
- Kawai, K.; Minagi, K.; Nakamura, T.; Saiki, S.T.; Yazaki, K.; Ishida, A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. Tree Physiol. 2022, 42, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Janssen, T.A.; Hölttä, T.; Fleischer, K.; Naudts, K.; Dolman, H. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant Cell Environ. 2019, 43, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Martínez-Cabrera, H.I. Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Ann. Bot. 2013, 112, 927–935. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function. Bot. J. Linn. Soc. 2015, 177, 291–321. [Google Scholar] [CrossRef]
- Gasson, P. Some implications of anatomical variations in the wood of pedunculate oak (Quercus robur L.), including comparisons with common beech (Fagus sylvatica L.). IAWA J. 1987, 8, 149–166. [Google Scholar] [CrossRef]
Elevation (m asl) | Aspect | Slope (°) | Soil Depth (cm) Mean ± SD | Canopy Height (m) Mean ± SD | Stand Age (yrs) Mean ± SD | |
---|---|---|---|---|---|---|
N-site | 2150 | N | 35 | 12 ± 3 | 270 ± 80 | 15 ± 7 |
S-site | 2140 | SE | 30 | 7 ± 3 | 140 ± 40 | 20 ± 8 |
Tair (°C) 1 | Solar Radiation (Wm−2) | Tsoil (°C) 2 | Soil Moisture (% vol.) | Ring Width (µm) | |
---|---|---|---|---|---|
S-site | 10.8 ± 4.0 | 229.5 ± 82.7 | 10.3 ± 1.0 | 20.1 ± 2.7 | 378 ± 171 |
N-site | 10.4 ± 3.6 | 180.7 ± 67.1 | 9.8 ± 1.1 | 23.0 ± 3.2 | 714 ± 228 |
p | 0.421 | <0.001 | 0.021 | <0.001 | <0.001 |
MVA (µm2) | VD (no./mm−2) | TCA (%) | PA (%) | |
---|---|---|---|---|
N-site (ARtot) | 659.5 ± 177.4 | 135.6 ± 39.5 | 9.3 ± 2.4 | 10.1 ± 2.0 |
S-site (ARtot) | 708.4 ± 223.5 | 110.9 ± 32.9 | 7.7 ± 2.9 | 16.5 ± 5.2 |
N-site (ARfirst) | 741.6 ± 187.5 | 166.1 ± 65.6 | 11.5 ± 3.1 | 4.0 ± 2.1 |
N-site (ARsecond) | 658,8 ± 153.7 | 133.3 ± 55.4 | 8.3 ± 2.3 | 14.9 ± 3.5 |
S-site (ARfirst) | 823.6 ± 241.8 | 109.7 ± 37.8 | 8.8 ± 3.4 | 9.5 ± 4.9 |
S-site (ARsecond) | 701.1 ± 161.9 | 84.9 ± 34.0 | 6.5 ± 4.3 | 19.6 ± 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruber, A.; Wieser, G.; Fink, M.; Oberhuber, W. Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline. Forests 2024, 15, 24. https://doi.org/10.3390/f15010024
Gruber A, Wieser G, Fink M, Oberhuber W. Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline. Forests. 2024; 15(1):24. https://doi.org/10.3390/f15010024
Chicago/Turabian StyleGruber, Andreas, Gerhard Wieser, Marion Fink, and Walter Oberhuber. 2024. "Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline" Forests 15, no. 1: 24. https://doi.org/10.3390/f15010024
APA StyleGruber, A., Wieser, G., Fink, M., & Oberhuber, W. (2024). Impact of Environmental Conditions on Wood Anatomical Traits of Green Alder (Alnus alnobetula) at the Alpine Treeline. Forests, 15(1), 24. https://doi.org/10.3390/f15010024