Spatiotemporal Dynamics of Betula pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Atkinson, M.D. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. Russ. J. Ecol. 1992, 80, 37–870. [Google Scholar] [CrossRef]
- Koski, V.; Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. Forestry 2005, 78, 187–198. [Google Scholar] [CrossRef]
- Tiebel, K.; Huth, F.; Wagner, S. Is there an effect of storage depth on the persistence of silver birch (Betula pendula Roth) and rowan (Sorbus aucuparia L.) seeds? A seed burial experiment. Iforest-Biogeosciences For. 2021, 14, 224–230. [Google Scholar] [CrossRef]
- Brouwer, W.; Stählin, A. Seed Manual of Agriculture, Horticulture and Forestry [Handbuch der Samenkunde für Landwirtschaft, Gartenbau und Forstwirtschaft]; DLG-Verlags-GmbH: Frankfurt am Main, Germany, 1975; 655p. [Google Scholar]
- Perala, D.A.; Alm, A.A. Reproductive ecology of birch: A review. For. Ecol. Manag. 1990, 32, 1–38. [Google Scholar] [CrossRef]
- Chizhov, B.E.; Ivanova, R.I.; Shtol, V.A.; Kulyasova, O.A. The features of silver birch Betula verrucosa Ehrh. and downy birch Betula pubescens Ehrh. seed regeneration in subtaiga and forest-steppe of Western Siberia. Sibirskij Lesnoj Zurnal 2016, 6, 49–59. [Google Scholar] [CrossRef]
- Minami, S.; Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 2003, 225, 1–14. [Google Scholar] [CrossRef]
- Kohler, M.; Pyttel, P.; Kuehne, C.; Modrow, T.; Bauhus, J. On the knowns and unknowns of natural regeneration of silviculturally managed sessile oak (Quercus petraea (Matt.) Liebl.) forests—A literature review. Ann. For. Sci. 2020, 77, 101. [Google Scholar] [CrossRef]
- Sarvas, R. A research on the regeneration of birch in Southern Finland. Commun. Inst. For. Fenn. 1948, 35, 1–91, (In Finnish (English Summary)). [Google Scholar]
- Krasnobaeva, K.V.; Singatullin, I.K. Recommendations on Management in Birch Forests of Mixed Forests and Forest-Steppe Subzone (on the Example of the Republic of Tatarstan); GUP PIK Idel-Press: Kazan, Russia, 2002; 32p. [Google Scholar]
- Midmore, E.K.; McCartan, S.A.; Jinks, R.L.; Cahalan, C.M. Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England. Silva Fenn. 2015, 49, 1266. [Google Scholar] [CrossRef]
- Granström, A. Seed viability of fourteen species during five years of storage in a forest soil. J. Ecol. 1987, 75, 321–331. [Google Scholar] [CrossRef]
- Skoglund, J.; Verwijst, T. Age structure of woody species populations in relation to seed rain, germination and establishment along the river Dalälven, Sweden. Vegetatio 1989, 82, 25–34. [Google Scholar] [CrossRef]
- Huth, F. Studies on the Regeneration Ecology of the Sand Birch (Betula pendula Roth) [Untersuchungen zur Verjüngungsökologie der Sand–Birke (Betula pendula Roth)]. 2009. Available online: https://tud.qucosa.de/landing-page/?tx_dlf[id]=https%3A%2F%2Ftud.qucosa.de%2Fapi%2Fqucosa%253A25272%2Fmets (accessed on 5 November 2023).
- Tiebel, K.; Huth, F.; Frischbier, N.; Wagner, S. Restrictions on natural regeneration of storm–felled spruce sites by silver birch (Betula pendula Roth) through limitations in fructification and seed dispersal. Eur. J. For. Res. 2020, 139, 731–745. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. Fruit abscission in Acer saccharinum with reference to seed dispersal. Can. J. Bot. 1992, 70, 2277–2283. [Google Scholar] [CrossRef]
- Greene, D.F.; Johnson, E.A. Particulate diffusion models and the dispersal of seeds by the wind. Trends Ecol. Evol. 1989, 4, 191–192. [Google Scholar] [CrossRef]
- Nathan, R.; Safriel, U.N.; Noy-Meir, I.; Schiller, G. Seed release without fire in Pinus halepensis, a Mediterranean serotinous wind-dispersed tree. J. Ecol. 1999, 87, 659–669. [Google Scholar] [CrossRef]
- Horn, H.S.; Nathan, R.A.N.; Kaplan, S.R. Long–distance dispersal of tree seeds by wind. Ecol. Res. 2001, 16, 877–885. [Google Scholar] [CrossRef]
- Tackenberg, O.; Poschlod, P.; Kahmen, S. Dandelion seed dispersal: The horizontal wind speed does not matter for long-distance dispersal-it is updraft! Plant Biol. 2003, 5, 451–454. [Google Scholar] [CrossRef]
- Tackenberg, O. Modeling long distance dispersal of plant diaspores by wind. Ecol. Monogr. 2003, 73, 173–189. [Google Scholar] [CrossRef]
- Lentink, D.; Dickson, W.B.; Van Leeuwen, J.L.; Dickinson, M.H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 2009, 324, 1438–1440. [Google Scholar] [CrossRef]
- Kaproth, M.A.; McGraw, J.B. Seed viability and dispersal of the wind-dispersed invasive Ailanthus altissima in aqueous environments. For. Sci. 2008, 54, 490–496. [Google Scholar]
- Zhu, J.; Liu, M.; Xin, Z.; Liu, Z.; Schurr, F.M. A trade-off between primary and secondary seed dispersal by wind. Plant Ecol. 2019, 220, 541–552. [Google Scholar] [CrossRef]
- Pías, B.; Escribano-Avila, G.; Virgós, E.; Sanz-Pérez, V.; Escudero, A.; Valladares, F. The colonization of abandoned land by Spanish juniper: Linking biotic and abiotic factors at different spatial scales. For. Ecol. Manag. 2014, 329, 186–194. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Gómez, J.M.; Zamora, R. Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. J. Ecol. 2005, 93, 1194–1202. [Google Scholar] [CrossRef]
- Dey, D.C.; Knapp, B.O.; Battaglia, M.A.; Deal, R.L.; Hart, J.L.; O’Hara, K.L.; Schuler, T.M. Barriers to natural regeneration in temperate forests across the USA. New For. 2019, 50, 11–40. [Google Scholar] [CrossRef]
- Im, C.; Chung, J.; Kim, H.S.; Chung, S.; Yoon, T.K. Are seed dispersal and seedling establishment distance–and/or density–dependent in naturally regenerating larch patches? A within–patch scale analysis using an eigenvector spatial filtering approach. For. Ecol. Manag. 2023, 531, 120763. [Google Scholar] [CrossRef]
- Janus, J.; Piotr, B.; Bartosz, M.; Taszakowski, J.; Doroż, A. Long-term forest cover and height changes on abandoned agricultural land: An assessment based on historical stereometric images and airborne laser scanning data. Ecol. Indic. 2021, 120, 106904. [Google Scholar] [CrossRef]
- Sačkov, I.; Barka, I.; Bucha, T. Mapping aboveground woody biomass on abandoned agricultural land based on airborne laser scanning data. Remote Sens. 2020, 12, 4189. [Google Scholar] [CrossRef]
- Bozek, P.; Janus, J.; Taszakowski, J.; Glowacka, A. The use of lidar data and cadastral databases in the identification of land abandonment. Int. Multidiscip. Sci. GeoConference SGEM 2017, 17, 705–712. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Jiang, H.; Chianucci, F.; Hu, R.; Song, W.; Qi, J.; Liu, S.; Zhou, J.; Chen, L.; et al. Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: Definitions, advances, challenges, and future perspectives. ISPRS J. Photogramm. Remote Sens. 2023, 199, 133–156. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850. [Google Scholar] [CrossRef]
- Fedorov, N.; Shirokikh, P.; Zhigunova, S.; Baisheva, E.; Tuktamyshev, I.; Bikbaev, I.; Komissarov, M.; Zaitsev, G.; Giniyatullin, R.; Gabbasova, I.; et al. Dynamics of biomass and carbon stocks during reforestation on abandoned agricultural lands in Southern Ural region. Agriculture 2023, 13, 1427. [Google Scholar] [CrossRef]
- Wiki02. Encyclopaedia of Bashkortostan. Mishkinskiy District. Available online: http://wiki02.ru/encyclopedia/Mishkinskiy_rayon/t/9004 (accessed on 5 November 2023).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports № 106; FAO: Rome, Italy, 2015; Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1960251 (accessed on 5 November 2023).
- Fedorov, N.I.; Tuktamyshev, I.R.; Shirokikh, P.S.; Martynenko, V.B.; Naumova, L.G. Application of the winter and early-spring satellite images for assessment of the birch forest coverage on the abandoned agricultural lands. Bull. Tomsk. State Univ. Biol. 2022, 59, 110–127. [Google Scholar] [CrossRef]
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov (accessed on 5 November 2023).
- Rinn, F. TSAP V 3.6 Reference Manual: Computer Program for Tree-Ring Analysis and Presentation; Rinntech: Heidelberg, Germany, 1996; 263p. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open-Source Geospatial Foundation Project. 2022. Available online: http://qgis.osgeo.org (accessed on 5 November 2023).
- Statgraphics Technologies. Statgraphics 19 Centurion. Software. 2020. Available online: https://www.statgraphics.com/ (accessed on 5 November 2023).
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Rob. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- RP5.ru. World Weather. Available online: https://rp5.ru/Пoгoда_в_мире (accessed on 5 November 2023).
- Velázquez, E.; Martínez, I.; Getzin, S.; Moloney, K.A.; Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 2016, 39, 1042–1055. [Google Scholar] [CrossRef]
- Niemistö, P. Influence of initial spacing and row-to-row distance on the growth and yield of silver birch (Betula pendula). Scand. J. For. Res. 1995, 10, 245–255. [Google Scholar] [CrossRef]
- Niemistö, P. Effect of growing density on biomass and stem volume growth of downy birch stands on peatland in Western and Northern Finland. Silva Fenn. 2013, 47, 1–24. [Google Scholar] [CrossRef]
- Liu, Z.; Evans, M. Effect of Tree Density on Seed Production and Dispersal of Birch (Betula pendula Roth and Betula pubescens Ehrhs). Forests 2021, 12, 929. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Brancalion, P.H.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Guimarães Vieira, I.C.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Terms and Definitions. 2020. Available online: https://www.fao.org/forest-resources-assessment/2020/en/ (accessed on 5 November 2023).
- Whitcomb, R.F.; Robbins, C.S.; Lynch, J.F.; Whitcomb, B.L.; Klimiewica, M.K.; Bystrak, D.; Sharpe, D.M. Forest island dynamics in a man dominated landscape. In Ecological Studies: Analysis and Synthesis; Springer: New York, NY, USA, 1981; Volume 41, pp. 125–205. [Google Scholar]
- Kim, M.; Lee, S.; Lee, S.; Yi, K.; Kim, H.-S.; Chung, S.; Chung, J.; Kim, H.S.; Yoon, T.K. Seed Dispersal Models for Natural Regeneration: A Review and Prospects. Forestry 2022, 13, 659. [Google Scholar] [CrossRef]
- Augspurger, C.K.; Franson, S.E. Wind dispersal of artificial fruits varying in mass, area, and morphology. Ecology 1987, 68, 27–42. [Google Scholar] [CrossRef]
- Nathan, R.; Horn, H.S.; Levin, S.A.; Pacala, S.W.; Katul, G.G.; Avissar, R.; Walko, R.L.; Thomas, S.M. Long-distance dispersal of tree seeds by wind: The role of vertical wind updrafts [abstract]. In Symposium Abstracts of the 86 Annual Meeting of the Ecological Society of America; Ecological Society of America: Washington, DC, USA, 2001; pp. 28–29. [Google Scholar]
- Oikarinen, M. Growth and yield models for silver birch (Betula pendula) plantations in southern Finland. Commun. Instituti For. Fenn. 1983, 113, 1–75. [Google Scholar]
- Dubois, H.; Verkasalo, E.; Claessens, H. Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 2020, 11, 336. [Google Scholar] [CrossRef]
- Aldea, J.; Bravo, F.; Bravo-Oviedo, A.; Ruiz-Peinado, R.; Rodríguez, F.; Del Río, M. Thinning enhances the species-specific radial incremen response to drought in Mediterranean pine-oak stands. Agric. For. Meteorol. 2017, 237, 371–383. [Google Scholar] [CrossRef]
No. of Sample Plot | Coordinates of Center of Sample Plot | Surface Topography | Sample Plot Size | Distance between Seed Source and Opposite Edge of Sample Plot | Seed Dispersal Direction on Sample Plot | Elevation, m above Sea Level | |
---|---|---|---|---|---|---|---|
Length, m | Area, ha | ||||||
1 | N55°39′24″, E56°8′41″ | Flat surface | 604 | 9.37 | 640 | NE | 176 |
2 | N55°38′28″, E56°13′39″ | NW slope, 3.6° | 345 | 16.03 | 391 | S | 202 |
3 | N55°37′57″, E56°13′54″ | W slope, 2.0° | 756 | 32.15 | 756 | NW | 231 |
4 | N55°43′17″, E56°27′21″ | Flat surface | 776 | 15.04 | 776 | N | 204 |
No. of Sample Plot | Average Height of Seed Trees, m | Age Range of Tree Stand, years | Number of Trees in 2022, pcs/ha | Average Height of Trees in Sample Plots, m | |||
---|---|---|---|---|---|---|---|
Near Seed Source | Far from Seed Source | Near Seed Source | Far from Seed Source | Near Seed Source | Far from Seed Source | ||
1 | 19.4 ± 0.1 | 21–22 | 20–21 | 1568 | 740 | 14.2 ± 0.1 | 12.2 ± 0.2 |
2 | 22.4 ± 0.1 | 21–22 | 21–22 | 1548 | 504 | 14.8 ± 0.1 | 12.1 ± 0.2 |
3 | 21.2 ± 0.1 | 22–24 | 19–22 | 476 | 256 | 14.1 ± 0.1 | 9.2 ± 0.2 |
4 | 24.0 ± 0.2 | 22–24 | 20 | 1068 | 720 | 11.9 ± 0.1 | 11.5 ± 0.1 |
Sample Plot Number | Strength of Factor Influence η2 * | |||||
---|---|---|---|---|---|---|
2009 | 2012 | 2014 | 2016 | 2017 | 2021 | |
1 | 0.76 | 0.57 | 0.53 | 0.49 | 0.45 | 0.24 |
2 | 0.61 | 0.70 | 0.69 | 0.64 | 0.67 | 0.63 |
3 | 0.40 | 0.72 | 0.64 | 0.69 | 0.68 | 0.76 |
4 | 0.90 | 0.86 | 0.74 | 0.47 | 0.35 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, N.; Tuktamyshev, I.; Bikbaev, I.; Shirokikh, P.; Zhigunova, S.; Baisheva, E.; Martynenko, V. Spatiotemporal Dynamics of Betula pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural. Forests 2024, 15, 34. https://doi.org/10.3390/f15010034
Fedorov N, Tuktamyshev I, Bikbaev I, Shirokikh P, Zhigunova S, Baisheva E, Martynenko V. Spatiotemporal Dynamics of Betula pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural. Forests. 2024; 15(1):34. https://doi.org/10.3390/f15010034
Chicago/Turabian StyleFedorov, Nikolay, Ilshat Tuktamyshev, Ilnur Bikbaev, Pavel Shirokikh, Svetlana Zhigunova, Elvira Baisheva, and Vasiliy Martynenko. 2024. "Spatiotemporal Dynamics of Betula pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural" Forests 15, no. 1: 34. https://doi.org/10.3390/f15010034
APA StyleFedorov, N., Tuktamyshev, I., Bikbaev, I., Shirokikh, P., Zhigunova, S., Baisheva, E., & Martynenko, V. (2024). Spatiotemporal Dynamics of Betula pendula Crown Cover on Abandoned Arable Land in a Broad-Leaved Forest Zone of Bashkir Cis-Ural. Forests, 15(1), 34. https://doi.org/10.3390/f15010034