Color Change of Pear Wood (Pyrus communis L.) during Water Steam Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Samples Preparation
2.2. Steaming of Wood Samples
2.3. Colour Measurement
2.4. FT-IR Analysis
3. Results and Discussion
3.1. Color Analysis
3.2. FT-IR Analysis Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brauner, A.; Conway, E.M. Steaming Walnut for Color. For. Prod. J. 1964, 14, 525–527. [Google Scholar]
- Burmester, A. Einfluß einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh Werkst. 1973, 31, 237–243. [Google Scholar] [CrossRef]
- Sandoval-Torres, S.; Jomaa, W.; Marc, F.; Puiggali, J.R. Causes of color changes in wood during drying. For. Stud. 2010, 12, 167–175. [Google Scholar] [CrossRef]
- Bumgardner, M.; Nicholls, D.; Donovan, G. Effects of species information and furniture price on consumer preferences for selected woods. Wood Fiber Sci. 2007, 39, 71–81. [Google Scholar]
- Pervan, S.; Antonović, A.; Humar, M.; Straže, A.; Gorišek, Ž. Colour chemistry of steamed and boiled walnutwood (Juglans regia L.). Drv. Ind. 2006, 57, 127–133. [Google Scholar]
- Tolvaj, L.; Németh, R.; Varga, D.; Molnar, S. Colour homogenisation of beech wood by steam treatment. Drew. Wood 2009, 52, 5–17. [Google Scholar]
- Dzurenda, L.; Dudiak, M. Homogenization of the Color of Beech Sapwood and False Heartwood by the Steaming Process. Forests 2024, 15, 1009. [Google Scholar] [CrossRef]
- Kollmann, F.; Keylwerth, R.; Kübler, H. Verfärbungen des Vollholzes und der Furniere bei der künstlichen Holztrocknung. Holz Roh Werkst. 1951, 9, 382–391. [Google Scholar] [CrossRef]
- Navi, P.; Sandberg, D. Thermo-Hydro-Mechanical Processing of Wood, 1st ed.; EPFL Press: Lausanne, Switzerland, 2012; pp. 1–360. [Google Scholar]
- Straže, A.; Gorišek, Ž.; Pervan, S.; Prekrat, S.; Antonović, A. Research on colour variation of steamed cherrywood (Prunus avium L.). Wood Res. 2008, 53, 77–90. [Google Scholar]
- Németh, R.; Hill, C.A.S.; Takáts, P.; Tolvaj, L. Chemical changes of wood during steaming measured by IR spectroscopy. Wood Mater. Sci. Eng. 2014, 11, 95–101. [Google Scholar] [CrossRef]
- Koch, G.; Puls, J.; Bauch, J. Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.). Holzforschung 2003, 57, 339–345. [Google Scholar] [CrossRef]
- Klarić, M.; Oven, P.; Gorišek, Ž.; Španić, N.; Pervan, S. Yield of Stirred Cold Maceration and Extraction of Milled European Black Alder Wood and Bark using Different Solvents. BioResources 2016, 11, 9244–9254. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Verlag Kessel: Remagen, Germany, 1989; pp. 1–613. [Google Scholar]
- Sundqvist, B.; Morén, T. The Influence of Wood Polymers and Extractives on Wood Colour Induced by Hydrothermal Treatment. Holz Roh Werkst. 2002, 60, 375–376. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Šefc, B. Vrste Drva s Naslovnica Časopisa Drvna Industrija; Faculty of Forestry, University of Zagreb: Zagreb, Croatia, 2019. [Google Scholar]
- ASTM 193-06; Standard Specification for Reagent Water. ASTM International: West Conshohocken, PA, USA, 2011.
- Timar, C.M.; Varodi, A.; Hacibektasoglu, M.; Campean, M. Color and FTIR analysis of chemical changes in beech wood (Fagus sylvatica L.) after light steaming and heat treatment in two different environments. BioResources 2016, 11, 8325–8343. [Google Scholar] [CrossRef]
- Banadics, E.A.; Tolvaj, L. Colour modification of poplar wood by steaming for brown colour. Eur. J. Wood Prod. 2019, 77, 717–719. [Google Scholar] [CrossRef]
- Tolvaj, L.; Papp, G.; Varga, D.; Lang, E. Effect of steaming on the colour change of softwoods. BioRes 2012, 7, 2799–2808. [Google Scholar] [CrossRef]
- Preklet, E.; Tolvaj, L.; Banadics, E.A.; Alpar, T.; Varga, D. Colour modification and homogenisation of larch wood by steaming. Wood Res. 2019, 64, 811–820. [Google Scholar]
- Pandey, K.K. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Colom, X.; Carillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 2003, 30, 543–549. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Eur. J. Wood Wood Prod. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Gierlinger, N.; Goswami, L.; Schmidt, M.; Burgert, I.; Coutand, C.; Rogge, T.; Schwanninger, M. In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross sections. Biomacromolecules 2008, 9, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Hao, Y.; Pan, Y.; Du, R.; Wang, Y.; Chen, Z.; Zhang, X.; Wang, X. The Influence of a thermal treatment on the decay resistance of wood via FTIR analysis. Adv. Mater. Sci. Eng. 2018, 8461407. [Google Scholar] [CrossRef]
- Chen, C.-L. Lignins: Occurrence in woody tissues, isolation, reactions, and structure. In Wood Structure and Composition; Lewin, M., Goldstein, I.S., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 183–261. [Google Scholar]
- Burtin, P.; Jay-Allemand, C.; Charpentier, J.-P.; Janin, G. Natural wood colouring proces sin Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 × J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 1998, 12, 258–264. [Google Scholar] [CrossRef]
- Mitsui, K.; Takada, H.; Sugiyama, M.; Hasegawa, R. Changes in the Properties of Light-Irradiated Wood with Heat Treatment. Part 1. Effect of Treatment Conditions on the Change in Color. Holzforschung 2001, 55, 601–605. [Google Scholar] [CrossRef]
- Dzurenda, L.; Dudiak, M. Effect of UV radiation on change in color of steamed beech wood. Wood Res. 2022, 67, 361–371. [Google Scholar] [CrossRef]
- Banadics, E.A.; Tolvaj, L.; Varga, D. Colour Stability of Steamed Poplar Wood during Short-Term Photodegradation. BioRes 2019, 14, 8250–8256. [Google Scholar] [CrossRef]
- Hofmann, T.; Tolvaj, L.; Visi-Rajczi, E.; Varga, D. Chemical Changes of Steamed Timber during Short-Term Photodegradation Monitored by FTIR Spectroscopy. Eur. J. Wood Prod. 2022, 80, 841–849. [Google Scholar] [CrossRef]
- Dudiak, M. Modification of maple wood colour during the process of thermal treatment with saturated water steam. Acta Fac. Xylologiae Zvolen. 2021, 63, 25–34. [Google Scholar] [CrossRef]
- Dzurenda, L. The Shades of Color of Quercus Robur L. Wood Obtained through the Processes of Thermal Treatment with Saturated Water Vapor. BioRes 2018, 13, 1525–1533. [Google Scholar] [CrossRef]
- Výbohová, E.; Geffertová, J.; Geffert, A. Impact of Steaming on the Chemical Composition of Maple Wood. BioRes 2018, 13, 5862–5874. [Google Scholar] [CrossRef]
- Banadics, E.A.; Tolvaj, L.; Varga, D. Steaming of poplar, black locust and beech timbers simultaneously to investigate colour modification effect of extractive transport. Drewno 2022, 65, 1–11. [Google Scholar] [CrossRef]
Variable † | Mean | Std. Deviation | R2 | Adjusted R2 | F-Statistic | Pr > F | Coefficient (Time) | Std. Error (Time) | t (Time) | Pr > |t| (Time) |
---|---|---|---|---|---|---|---|---|---|---|
SW L | 53.386 | 3.516 | 0.717 | 0.691 | 27.881 | 0.000 | −0.391 | 0.074 | −5.280 | 0.000 |
SW a | 11.053 | 1.139 | 0.399 | 0.344 | 7.306 | 0.021 | 0.079 | 0.029 | 2.703 | 0.021 |
SW b | 22.098 | 2.359 | 0.442 | 0.391 | 8.707 | 0.013 | −0.207 | 0.070 | −2.951 | 0.013 |
HW L | 51.947 | 3.328 | 0.497 | 0.452 | 10.879 | 0.007 | −0.275 | 0.083 | −3.298 | 0.007 |
HW a | 12.487 | 0.746 | 0.172 | 0.097 | 2.286 | 0.159 | 0.031 | 0.020 | 1.512 | 0.159 |
HW b | 23.840 | 3.266 | 0.608 | 0.572 | 17.058 | 0.002 | −0.308 | 0.075 | −4.130 | 0.002 |
Variable † | R2 | Adjusted R2 | F-Statistic | Pr > F | Coefficient (Time) | Std. Error (Time) | t (Time) | Pr > |t| (Time) |
---|---|---|---|---|---|---|---|---|
SW ΔL | 0.669 | 0.636 | 20.221 | 0.001 | −0.313 | 0.070 | −4.497 | 0.001 |
SW Δa | 0.554 | 0.510 | 12.428 | 0.005 | 0.105 | 0.030 | 3.525 | 0.005 |
SW Δb | 0.451 | 0.396 | 8.218 | 0.017 | −0.096 | 0.033 | −2.867 | 0.017 |
SW ΔE | 0.842 | 0.826 | 53.138 | <0.0001 | 0.297 | 0.041 | 7.290 | <0.0001 |
HW ΔL | 0.515 | 0.467 | 10.619 | 0.009 | −0.146 | 0.045 | −3.259 | 0.009 |
HW Δa | 0.377 | 0.315 | 6.057 | 0.034 | 0.050 | 0.020 | 2.461 | 0.034 |
HW Δb | 0.716 | 0.688 | 25.234 | 0.001 | −0.191 | 0.038 | −5.023 | 0.001 |
HW ΔE | 0.739 | 0.713 | 28.36 | <0.0001 | 0.237 | 0.044 | 5.325 | <0.0001 |
Peak Position, cm−1 | Borders of Integrated Area, cm−1 | Integrated Areas (A) | ||
---|---|---|---|---|
Un-Steamed | Steamed for 12 h | Steamed for 24 h | ||
3345 | 3706–3030 | 397.90 | 407.59 | 404.03 |
1732 | 1785–1693 | 23.15 | 31.00 | 20.85 |
1650 | 1685–1622 | 16.05 | 22.32 | 14.26 |
1501 | 1527–1480 | 7.85 | 11.03 | 8.06 |
1369 | 1393–1345 | 19.32 | 27.87 | 19.52 |
Peak Position, cm−1 | Borders of Integrated Area, cm−1 | Integrated Areas (A) | ||
---|---|---|---|---|
Un-Steamed | Steamed for 12 h | Steamed for 24 h | ||
3345 | 3706–3030 | 527.27 | 402.98 | 383.86 |
1732 | 1785–1693 | 35.06 | 21.78 | 22.10 |
1650 | 1685–1622 | 25.57 | 15.13 | 16.00 |
1501 | 1527–1480 | 14.45 | 7.92 | 8.92 |
1369 | 1393–1345 | 33.20 | 19.72 | 20.60 |
FT-IR Ratio | Assignment | Treatment | |||||
---|---|---|---|---|---|---|---|
Un-Steamed | Steamed for 12 h | Steamed for 24 h | |||||
A1732/A1369 | Non-conjugated carbonyl/Carbohydrates | 1.20 | 1.06 1 | 1.11 | 1.10 | 1.07 | 1.07 |
A1501/A1369 | Lignin/Carbohydrates | 0.41 | 0.44 | 0.40 | 0.40 | 0.41 | 0.43 |
A1732/A1650 | Non-conjugated carbonyl/Conjugated carbonyl | 1.44 | 1.37 | 1.39 | 1.44 | 1.46 | 1.38 |
A3340/A1501 | Hydroxyl/Lignin | 50.66 | 36.47 | 36.92 | 50.83 | 50.07 | 42.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klarić, M.; Španić, N.; Budrović, Z.; Zorić, A.Č.; Pervan, S.; Klarić, K. Color Change of Pear Wood (Pyrus communis L.) during Water Steam Treatment. Forests 2024, 15, 1685. https://doi.org/10.3390/f15101685
Klarić M, Španić N, Budrović Z, Zorić AČ, Pervan S, Klarić K. Color Change of Pear Wood (Pyrus communis L.) during Water Steam Treatment. Forests. 2024; 15(10):1685. https://doi.org/10.3390/f15101685
Chicago/Turabian StyleKlarić, Miljenko, Nikola Španić, Zlatko Budrović, Andreja Čunčić Zorić, Stjepan Pervan, and Kristina Klarić. 2024. "Color Change of Pear Wood (Pyrus communis L.) during Water Steam Treatment" Forests 15, no. 10: 1685. https://doi.org/10.3390/f15101685
APA StyleKlarić, M., Španić, N., Budrović, Z., Zorić, A. Č., Pervan, S., & Klarić, K. (2024). Color Change of Pear Wood (Pyrus communis L.) during Water Steam Treatment. Forests, 15(10), 1685. https://doi.org/10.3390/f15101685