A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Saplings
2.2. Wind Tunnel Test
2.3. Data Analysis
3. Results
3.1. General Wake Patterns after Passing Seed Trees
3.2. Changes in Wind Speed by Seed Tree Arrangement
3.3. Curve Fitting of Wind Speed Reduction and Recovery Using an Empirical Model
3.4. Relationship between Leaf Area and Relative Wind Speed
4. Discussion
4.1. Horizontal and Vertical Patterns of Wind Speed Passing Sapling(s)
4.2. Effects of Seed Tree Arrangement Design on Wind Speed Change and Seed Dispersal
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quine, C.P.; Gardiner, B.A. Understanding how the interaction of wind and trees results in windthrow, stem breakage, and canopy gap formation. In Plant Disturbance Ecology: The Process and the Response; Johnson, E., Ed.; Academic Press: Cambridge, MA, USA, 2007; pp. 103–155. [Google Scholar] [CrossRef]
- Schindler, D.; Bauhus, J.; Mayer, H. Wind effects on trees. Eur. J. For. Res. 2007, 131, 159–163. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.; Lee, S.; Yi, K.; Kim, H.S.; Chung, S.; Chung, J.; Kim, H.S.; Yoon, T.K. Seed dispersal models for natural regeneration: A review and prospects. Forests 2022, 13, 659. [Google Scholar] [CrossRef]
- Salazar-Tortosa, D.; Saladin, B.; Zimmermann, N.E.; Castro, J.; Rubio de Casas, R. The evolution of seed dispersal is associated with environmental heterogeneity in Pinus. Perspect. Plant Ecol. Evol. Syst. 2019, 41, 125464. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Ruck, B.; Frank, C.; Tischmacher, M. On the influence of windward edge structure and stand density on the flow characteristics at forest edges. Eur. J. For. Res. 2012, 131, 177–189. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, C.M.; Mason, M.S. Review of models for predicting wind characteristics behind windbreaks. J. Wind Eng. Ind. Aerodyn. 2020, 199, 104117. [Google Scholar] [CrossRef]
- Weninger, T.; Scheper, S.; Lackóová, L.; Kitzler, B.; Gartner, K.; King, N.W.; Cornelis, W.; Strauss, P.; Michel, K. Ecosystem services of tree windbreaks in rural landscapes—A systematic review. Environ. Res. Lett. 2021, 16, 103002. [Google Scholar] [CrossRef]
- Torshizi, M.R.; Miri, A.; Shahriari, A.; Dong, Z.; Davidson-Arnott, R. The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran. J. Environ. Manag. 2020, 265, 110486. [Google Scholar] [CrossRef]
- Bhutto, S.L.; Miri, A.; Zhang, Y.; Bhutto, D.A.; Cao, Q.; Xin, Z.; Xiao, H. Experimental study on the effect of four single shrubs on aeolian erosion in a wind tunnel. Catena 2022, 212, 106097. [Google Scholar] [CrossRef]
- Fellini, S.; Marro, M.; Del Ponte, A.V.; Barulli, M.; Soulhac, L.; Ridolfi, L.; Salizzoni, P. High resolution wind-tunnel investigation about the effect of street trees on pollutant concentration and street canyon ventilation. Build. Environ. 2022, 226, 109763. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Ashton, M.S.; Kelty, M.J. Chapter 5. Ecology of regeneration. In The Practice of Silviculture: Applied Forest Ecology, 10th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 80–116. [Google Scholar]
- Dey, D.C.; Knapp, B.O.; Battaglia, M.A.; Deal, R.L.; Hart, J.L.; O’Hara, K.L.; Schweitzer, C.J.; Schuler, T.M. Barriers to natural regeneration in temperate forests across the USA. New For. 2019, 50, 11–40. [Google Scholar] [CrossRef]
- Kohler, M.; Pyttel, P.; Kuehne, C.; Modrow, T.; Bauhus, J. On the knowns and unknowns of natural regeneration of silviculturally managed sessile oak (Quercus petraea (Matt.) Liebl.) forests—A literature review. Ann. For. Sci. 2020, 77, 101. [Google Scholar] [CrossRef]
- Heydel, F.; Cunze, S.; Bernhardt-Römermann, M.; Tackenberg, O. Long-distance seed dispersal by wind: Disentangling the effects of species traits, vegetation types, vertical turbulence and wind speed. Ecol. Res. 2014, 29, 641–651. [Google Scholar] [CrossRef]
- Kuparinen, A. Mechanistic models for wind dispersal. Trends Plant Sci. 2006, 11, 296–301. [Google Scholar] [CrossRef]
- Nathan, R.; Safriel, U.N.; Noy-Meir, I. Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. J. Ecol. 2001, 82, 374–388. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Kim, H.S.; Chung, S.; Chung, J.; Yoon, T.K. Terminal velocities and falling patterns correlate with morphology of diaspores in wind-dispersed forestry species. Trees 2022, 36, 1865–1879. [Google Scholar] [CrossRef]
- Wyse, S.V.; Hulme, P.E.; Holland, E.P. Partitioning intraspecific variation in seed dispersal potential using a low-cost method for rapid estimation of samara terminal velocity. Methods Ecol. Evol. 2019, 10, 1298–1307. [Google Scholar] [CrossRef]
- Guzmán-Vázquez, I.; León-Cruz, J.F.; Galicia, L. Role of dispersal in the altitudinal migration of Pinus hartwegii and Abies religiosa in mountain systems. Front. Ecol. Evol. 2023, 11, 1150137. [Google Scholar] [CrossRef]
- Bohrer, G.; Katul, G.G.; Walko, R.L.; Avissar, R. Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Bound.-Layer Meteorol. 2009, 132, 351–382. [Google Scholar] [CrossRef]
- Schlegel, F.; Stiller, J.; Bienert, A.; Maas, H.-G.; Queck, R.; Bernhofer, C. Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound.-Layer Meteorol. 2015, 154, 27–56. [Google Scholar] [CrossRef]
- Chan, W.L.; Eng, Y.; Ge, Z.; Lim, C.W.C.; Gobeawan, L.; Poh, H.J.; Wise, D.J.; Burcham, D.C.; Lee, D.; Cui, Y.D.; et al. Wind loading on scaled down fractal tree models of major urban tree species in Singapore. Forests 2020, 11, 803. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, K.; Liu, C.; Zou, X.; Kang, L.; Chen, T.; He, W.; Fang, Y. Wind tunnel study of airflow recovery on the lee side of single plants. Agric. For. Meteorol. 2018, 263, 362–372. [Google Scholar] [CrossRef]
- Vollsinger, S.; Mitchell, S.J.; Byrne, K.E.; Novak, M.D.; Rudnicki, M. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species. Can. J. For. Res. 2005, 35, 1238–1249. [Google Scholar] [CrossRef]
- Zheng, S.; Guldmann, J.M.; Liu, Z.; Zhao, L.; Wang, J.; Pan, X.; Zhao, D. Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations. Sustain. Cities Soc. 2020, 57, 102116. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.B.; Hwang, H.S.; Shin, M.H.; Hong, S.W.; Seo, I.H.; Mostafa, E.; Pang, Z. A wind tunnel study on aerodynamic porosity and windbreak drag. For. Sci. Technol. 2011, 7, 8–16. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Zhu, T. A wind-tunnel study of windbreak drag. Agric. For. Meteorol. 2003, 118, 75–84. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.-B.; Hwang, H.-S.; Shin, M.-H.; Hong, S.-W.; Seo, I.-H.; Kwon, K.-S.; Mostafa, E.; Pang, Z. Numerical simulation study of a tree windbreak. Biosyst. Eng. 2012, 111, 40–48. [Google Scholar] [CrossRef]
- Mahgoub, A.O.; Ghani, S. Numerical and experimental investigation of utilizing the porous media model for windbreaks CFD simulation. Sustain. Cities Soc. 2021, 65, 102648. [Google Scholar] [CrossRef]
- Gardiner, B.A.; Stacey, G.R.; Belcher, R.E.; Wood, C.J. Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Int. J. For. Res. 1997, 70, 233–252. [Google Scholar] [CrossRef]
- Gardiner, B.; Marshall, B.; Achim, A.; Belcher, R.; Wood, C. The stability of different silvicultural systems: A wind-tunnel investigation. Forestry 2005, 78, 471–484. [Google Scholar] [CrossRef]
- Manickathan, L.; Defraeye, T.; Allegrini, J.; Derome, D.; Carmeliet, J. Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. Urban For. Urban Green. 2018, 35, 230–239. [Google Scholar] [CrossRef]
- Cao, J.; Tamura, Y.; Yoshida, A. Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species. Urban For. Urban Green. 2012, 11, 465–476. [Google Scholar] [CrossRef]
- Niklas, K.J. Size-dependent allometry of tree height, diameter and trunk-taper. Ann. Bot. 1995, 75, 217–227. [Google Scholar] [CrossRef]
- Shingleton, A. Allometry: The study of biological scaling. Nat. Educ. Knowl. 2010, 3, 2. [Google Scholar]
- Zhang, W.-P.; Zhao, L.; Larjavaara, M.; Morris, E.C.; Sterck, F.J.; Wang, G.-X. Height-diameter allometric relationships for seedlings and trees across China. Acta Oecol. 2020, 108, 103621. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Johnson, J.D. A rapid technique for estimating total surface area of pine needles. For. Sci. 1984, 30, 913–921. [Google Scholar]
- Korea Construction Engineering Development Collaboratory Management Institute (KOCED CMI). Available online: https://www.koced.or.kr/en/sub35 (accessed on 19 August 2024).
- Chamorro, L.P.; Porté-Agel, F. A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Bound.-Layer Meteorol. 2009, 132, 129–149. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 11 March 2024).
- He, Y.; Jones, P.J.; Rayment, M. A simple parameterisation of windbreak effects on wind speed reduction and resulting thermal benefits to sheep. Agric. For. Meteorol. 2017, 239, 96–107. [Google Scholar] [CrossRef]
- Torita, H.; Satou, H. Relationship between shelterbelt structure and mean wind reduction. Agric. For. Meteorol. 2007, 145, 186–194. [Google Scholar] [CrossRef]
- Wu, T.; Yu, M.; Wang, G.; Wang, Z.; Duan, X.; Dong, Y.; Cheng, X. Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agrofor. Syst. 2012, 87, 251–257. [Google Scholar] [CrossRef]
- Horn, H.S.; Nathan, R.A.N.; Kaplan, S.R. Long-distance dispersal of tree seeds by wind. Ecol. Res. 2001, 16, 877–885. [Google Scholar] [CrossRef]
- Qin, X.; Liang, W.; Liu, Z.; Liu, M.; Baskin, C.C.; Baskin, J.M.; Xin, Z.; Wang, Z.; Zhou, Q. Plant canopy may promote seed dispersal by wind. Sci. Rep. 2022, 12, 63. [Google Scholar] [CrossRef]
- Koh, I.; Park, C.-R.; Kang, W.; Lee, D. Seasonal effectiveness of a Korean traditional deciduous windbreak in reducing wind speed. J. Ecol. Environ. 2014, 37, 91–97. [Google Scholar] [CrossRef]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agrofor. Syst. 2004, 61, 65–78. [Google Scholar] [CrossRef]
Experimental Saplings (N = 12) | Seed Trees in a Reference Stand | Reduction Scale | |
---|---|---|---|
Height | 114.1 ± 16.0 cm | 22.0 m | 1:19.3 |
Clear length | 45.4 ± 10.2 cm | 10.4 m | 1:22.9 |
Crown diameter | 71.1 ± 18.3 cm | 6.1 m | 1:8.6 |
Diameter | 2.5 ± 0.5 cm (at root collar) | 38.0 cm (at breast height) | 1:15.2 |
Spacing between trees | 0.8 m | 6.6 m | 1:8.25 |
Variable | Estimate | Standard Error | t | p |
---|---|---|---|---|
Intercept | 67.66 | 2.81 | 24.10 | <0.001 |
Seed tree design: Patch-3 | 7.60 | 2.26 | 3.37 | <0.001 |
Seed tree design: Patch-5 | −1.51 | 2.26 | −0.67 | 0.51 |
Seed tree design: Strip-2 | 5.41 | 2.26 | 2.40 | <0.05 |
Seed tree design: Strip-4 | −9.26 | 2.26 | −4.10 | <0.001 |
Free-stream wind speed | 2.01 | 0.48 | 4.16 | <0.001 |
Height: canopy | −35.28 | 1.75 | −20.17 | <0.001 |
Height: stem | −16.35 | 1.75 | −9.35 | <0.001 |
Distance | 6.11 | 0.73 | 8.39 | <0.001 |
R2 | 0.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, T.K.; Lee, S.; Lee, S.; Lee, S.-g.; Hussain, M.; Lee, S.; Chung, H.; Chung, S. A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed. Forests 2024, 15, 1772. https://doi.org/10.3390/f15101772
Yoon TK, Lee S, Lee S, Lee S-g, Hussain M, Lee S, Chung H, Chung S. A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed. Forests. 2024; 15(10):1772. https://doi.org/10.3390/f15101772
Chicago/Turabian StyleYoon, Tae Kyung, Seonghun Lee, Seungmin Lee, Sle-gee Lee, Mariam Hussain, Seungho Lee, Haegeun Chung, and Sanghoon Chung. 2024. "A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed" Forests 15, no. 10: 1772. https://doi.org/10.3390/f15101772
APA StyleYoon, T. K., Lee, S., Lee, S., Lee, S. -g., Hussain, M., Lee, S., Chung, H., & Chung, S. (2024). A Wind Tunnel Test for the Effect of Seed Tree Arrangement on Wake Wind Speed. Forests, 15(10), 1772. https://doi.org/10.3390/f15101772