Impact of Skidding and Slope on Grapple Skidder Productivity and Costs: A Monte Carlo Simulation in Eucalyptus Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Details
2.3. Time Study Application
2.4. Productivity Study
2.5. Economic Management
2.6. Stochastic Modeling
3. Results and Discussion
3.1. Stochastic Analysis of Machine Elements
3.2. Stochastic Analysis of Productivity
3.3. Stochastic Cost Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. The State of the World’s Forests 2022. In Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies; Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Brazilian Institute of Geography and Statistics. Vegetal Extraction and Forestry Production; Brazilian Institute of Geography and Statistics: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Strandgard, M.; Mitchell, R.; Wiedemann, J. Comparison of Productivity, Cost and Chip Quality of Four Balanced Harvest Systems Operating in a Eucalyptus Globulus Plantation in Western Australia. Croat. J. For. Eng. 2019, 40, 39–48. [Google Scholar]
- Bernardi, B.; Macrì, G.; Falcone, G.; Stillitano, T.; Benalia, S.; De Luca, A.I. Assessment and Sustainability of Logging Operations in Calabrian Pine High Forests. Forests 2022, 13, 403. [Google Scholar] [CrossRef]
- Bessaad, A.; Bilger, I.; Korboulewsky, N. Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured? Forests 2021, 12, 807. [Google Scholar] [CrossRef]
- Tavankar, F.; Nikooy, M.; Latterini, F.; Venanzi, R.; Bianchini, L.; Picchio, R. The Effects of Soil Moisture on Harvesting Operations in Populus Spp. Plantations: Specific Focus on Costs, Energy Balance and Ghg Emissions. Sustainability 2021, 13, 4863. [Google Scholar] [CrossRef]
- Guera, O.G.M.; Silva, J.A.A.; da Ferreira, R.L.C.; Lazo, D.A.Á.; Medel, H.B.; Pita, A.L.D. Enfoque Multivariado En Experimentos de Extracción de Madera En Plantaciones Forestales. Madera y Bosques 2020, 26, e2621934. [Google Scholar] [CrossRef]
- Temba, G.P.; Mauya, E.W.; Shemwetta, D.T.K. Modeling Productivity and Costs of Mechanized Tree Length Skidding Operations. Tanzania J. For. Nat. Conserv. 2021, 90, 62–73. [Google Scholar]
- Obi, O.F.; Visser, R. Estimating the Influence of Extraction Method and Processing Location on Forest Harvesting Efficiency—A Categorical DEA Approach. Eur. J. For. Eng. 2021, 6, 60–67. [Google Scholar] [CrossRef]
- Conrad, J.L.; Dahlen, J. Productivity and Cost of Processors in Whole-Tree Harvesting Systems in Southern Pine Stands. For. Sci. 2019, 65, 767–775. [Google Scholar] [CrossRef]
- Ezzati, S.; Tavankar, F.; Ghaffariyan, M.R.; Venanzi, R.; Latterini, F.; Picchio, R. The Impact of Weather and Slope Conditions on the Productivity, Cost, and Ghg Emissions of a Ground-Based Harvesting Operation in Mountain Hardwoods. Forests 2021, 12, 1612. [Google Scholar] [CrossRef]
- Bagaram, M.B.; Tóth, S.F. Multistage Sample Average Approximation for Harvest Scheduling under Climate Uncertainty. Forests 2020, 11, 1230. [Google Scholar] [CrossRef]
- Wu, M.; Feng, Q.; Wen, X.; Deo, R.C.; Yin, Z.; Yang, L.; Sheng, D. Random Forest Predictive Model Development with Uncertainty Analysis Capability for the Estimation of Evapotranspiration in an Arid Oasis Region. Hydrol. Res. 2020, 51, 648–665. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Vance, J.; Wang, Y.; Wu, J.; Hartley, D. Data Analytics for Enhancement of Forest and Biomass Supply Chain Management. Curr. For. Rep. 2020, 6, 129–142. [Google Scholar] [CrossRef]
- Mouhib, Y.; Frini, A. TSMAA-TRI: A Temporal Multi-criteria Sorting Approach under Uncertainty. J. Multi-Criteria Decis. Anal. 2021, 28, 185–199. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Qiu, X.; Zhou, J.; Chen, X.; Gou, Y. Optimization of Postblast Ore Boundary Determination Using a Novel Sine Cosine Algorithm-Based Random Forest Technique and Monte Carlo Simulation. Eng. Optim. 2021, 53, 1467–1482. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wen, Z. Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest. Chin. Geogr. Sci. 2021, 31, 659–670. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.; Almeida, J.A.; Oliveira, J.B.; Lumbreras, J.F.; Anjos, L.H.C.; Coelho, M.R.; Jacomine, P.K.T.; Cunha, T.J.F.; Oliveira, V.A. Sistema Brasileiro de Classificação de Solos; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- ISO 13862:2022; Machinery for Forestry—Feller-Bunchers—Terms, Definitions and Commercial Specifications. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 13861:2022; Machinery for Forestry—Wheeled Skidders—Terms, Definitions and Commercial Specifications. International Organization for Standardization: Geneva, Switzerland, 2022.
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (Populus Spp.) Plantations. Forests 2020, 11, 502. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. Wood Extraction with Farm Tractor and Sulky: Estimating Productivity, Cost and Energy Consumption. Small-Scale For. 2012, 11, 73–85. [Google Scholar] [CrossRef]
- Di Gironimo, G.; Balsamo, A.; Esposito, G.; Lanzotti, A.; Melemez, K.; Spinelli, R. Simulation of Forest Harvesting Alternative Processes and Concept Design Ofan Innovative Skidding Winch Focused on Productivity Improvement. Turk. J. Agric. For. 2015, 39, 350–359. [Google Scholar] [CrossRef]
- Simões, D.; Avelino, L.T.; Munis, R.A.; Batistela, G.C.; Miyajima, R.H. Grapple Saw’S Operating Conditions Influence on the Productivity and Cost of Processing Felled Trees. Floresta 2022, 52, 64–73. [Google Scholar] [CrossRef]
- Kanawaty, G. Introducción Al Estudio Del Trabajo, 4th ed.; Oficina Internacional del Trabajo: Geneva, Switzerland, 1996. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Israel, G.D. Determining Sample Size; University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences: Gainesville, FL, USA, 2012. [Google Scholar]
- Miyajima, R.H.; Simões, D.; Fenner, P.T.; Batistela, G.C. The Impact of Felling Method, Bunch Size, Slope Degree and Skidding Area on Productivity and Costs of Skidding in a Eucalyptus Plantation. Croat. J. For. Eng. 2021, 42, 381–390. [Google Scholar] [CrossRef]
- Miyajima, R.H.; Passos, J.R.D.S.; Fenner, P.T.; Simões, D. Extração de Eucalipto Com Grapple Skidder: Abordagem de Produtividade Operacional e Custos de Produção. Sci. For. 2020, 48, 20210067032. [Google Scholar] [CrossRef]
- Bilici, E.; Akay, A.E.; Abbas, D. Assessing the Effects of Site Factors on the Productivity of a Feller Buncher: A Time and Motion Analysis. J. For. Res. 2019, 30, 1471–1478. [Google Scholar] [CrossRef]
- Ackerman, P.; Belbo, H.; Eliasson, L.; de Jong, A.; Lazdins, A.; Lyons, J. The COST Model for Calculation of Forest Operations Costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Vartiainen, E.; Masson, G.; Breyer, C.; Moser, D.; Medina, E.R. Impact of Weighted Average Cost of Capital, Capital Expenditure, and Other Parameters on Future Utility-Scale PV Levelised Cost of Electricity. Prog. Photovoltaics Res. Appl. 2020, 28, 439–453. [Google Scholar] [CrossRef]
- Munis, R.A.; Camargo, D.A.; Silva, R.B.G.; da Tsunemi, M.H.; Ibrahim, S.N.I.; Simões, D. Price Modeling of Eucalyptus Wood under Different Silvicultural Management for Real Options Approach. Forests 2022, 13, 478. [Google Scholar] [CrossRef]
- B3 S.A.–Brasil Bolsa Balcão Séries Históricas. Available online: https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/historico/mercado-a-vista/series-historicas/ (accessed on 15 June 2024).
- Damodaran, A. The Dark Side of Valuation, 3rd ed.; Pearson: London, UK, 2018; ISBN 0975442201. [Google Scholar]
- Moody’s Spread. Available online: https://www.moodys.com (accessed on 18 June 2024).
- Department of the Treasury T-Bonds. Available online: https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldAll (accessed on 18 June 2024).
- J. P. Morgan Emerging Markets Bond Index. Available online: https://www.jpmorgan.com/global (accessed on 19 June 2024).
- S&P Dow Jones Indices S&P 500. Available online: https://www.spglobal.com/spdji/en/indices/equity/sp-global-timber-and-forestry-index/#overview (accessed on 20 June 2024).
- Shinotsuka, H.; Nagata, K.; Yoshikawa, H.; Mototake, Y.I.; Shouno, H.; Okada, M. Development of Spectral Decomposition Based on Bayesian Information Criterion with Estimation of Confidence Interval. Sci. Technol. Adv. Mater. 2020, 21, 402–419. [Google Scholar] [CrossRef]
- Greco, L.; Racugno, W.; Ventura, L. Robust Likelihood Functions in Bayesian Inference. J. Stat. Plan. Inference 2008, 138, 1258–1270. [Google Scholar] [CrossRef]
- Simões, D.; Mosquera, G.A.D.; Batistela, G.C.; Passos, J.R.d.S.; Fenner, P.T. Quantitative Analysis of Uncertainty in Financial Risk Assessment of Road Transportation of Wood in Uruguay. Forests 2016, 7, 130. [Google Scholar] [CrossRef]
- Lumivero Software @Risk 2024., version 8.8.1. Available online: https://lumivero.com/products/at-risk (accessed on 26 May 2024).
- Gil, J.F.S.; da Silva, M.R.; Simões, D. Restauração de Uma Mata Ciliar: Análise Da Produtividade Efetiva Das Operações Sob Condições de Incertezas. Sci. For. 2021, 49, e3710. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Hristopulos, D.T.; Nikolaidis, N.P. Estimation of the Uncertainty of Hydrologic Predictions in a Karstic Mediterranean Watershed. Sci. Total Environ. 2020, 717, 137131. [Google Scholar] [CrossRef] [PubMed]
- Otsu, T.; Taniguchi, G. Kolmogorov–Smirnov Type Test for Generated Variables. Econ. Lett. 2020, 195, 109401. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Wang, H. The Fused Kolmogorov–Smirnov Screening for Ultra-High Dimensional Semi-Competing Risks Data. Appl. Math. Model. 2021, 98, 109–120. [Google Scholar] [CrossRef]
- Pereira, G.; Fenner, P.T.; Batistela, G.C.; Simões, D. Análise Técnica-Econômica Da Derrubada de Eucalyptus sp. com feller-buncher: Uma Abordagem Estocástica. Sci. For. 2020, 48, e3229. [Google Scholar] [CrossRef]
- Siegel, S. Estatística Não-Paramétrica Para as Ciências do Comportamento; McGraw-Hill do Brasil: São Paulo, Brazil, 1975. [Google Scholar]
- Wang, B.; Wang, R.; Wang, Y. Compatible Matrices of Spearman’s Rank Correlation. Stat. Probab. Lett. 2019, 151, 67–72. [Google Scholar] [CrossRef]
- Al-Hameeda, K.A.A. Spearman’s Correlation Coefficient in Statistical Analysis. Int. J. Nonlinear Anal. Appl. 2022, 13, 3249–3255. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Lee, C.-Y.; Chen, C.-Y. Robustness of Autoencoders for Establishing Psychometric Properties Based on Small Sample Sizes: Results from a Monte Carlo Simulation Study and a Sports Fan Curiosity Study. PeerJ Comput. Sci. 2022, 8, e782. [Google Scholar] [CrossRef] [PubMed]
- Seixas, F. Extração Florestal. In Colheita florestal; UFV: Viçosa, Brazil, 2008; pp. 97–145. [Google Scholar]
- Atangana, A.; Gómez-Aguilar, J.F. A New Derivative with Normal Distribution Kernel: Theory, Methods and Applications. Phys. A Stat. Mech. Its Appl. 2017, 476, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized Normal Distribution Optimization and Its Applications in Parameter Extraction of Photovoltaic Models. Energy Convers. Manag. 2020, 224, 113301. [Google Scholar] [CrossRef]
- Heijungs, R. On the Number of Monte Carlo Runs in Comparative Probabilistic LCA. Int. J. Life Cycle Assess. 2020, 25, 394–402. [Google Scholar] [CrossRef]
- Dheskali, E.; Koutinas, A.A.; Kookos, I.K. Risk Assessment Modeling of Bio-Based Chemicals Economics Based on Monte-Carlo Simulations. Chem. Eng. Res. Des. 2020, 163, 273–280. [Google Scholar] [CrossRef]
- Sarkar, B.; Dey, B.K.; Pareek, S.; Sarkar, M. A Single-Stage Cleaner Production System with Random Defective Rate and Remanufacturing. Comput. Ind. Eng. 2020, 150, 106861. [Google Scholar] [CrossRef]
- Aslam, M. Design of Sampling Plan for Exponential Distribution Under Neutrosophic Statistical Interval Method. IEEE Access 2018, 6, 64153–64158. [Google Scholar] [CrossRef]
- Afify, A.Z.; Mohamed, O.A. A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications. Mathematics 2020, 8, 135. [Google Scholar] [CrossRef]
- Dixit, V.U.; Khandeparkar, P.P. Tests for Scale Parameter of Skew Log Laplace Distribution. Am. J. Math. Manag. Sci. 2018, 37, 93–106. [Google Scholar] [CrossRef]
- Batsidis, A.; Economou, P.; Bar-Lev, S.K. A Comparative Study of Goodness-of-Fit Tests for the Laplace Distribution. Austrian J. Stat. 2022, 51, 91–123. [Google Scholar] [CrossRef]
- Johnson, J.P.; Scott, R.A. Extension of Eigenfunction-Expansion Solutions of a Fokker-Planck Equation-I. First Order System. Int. J. Non. Linear. Mech. 1979, 14, 315–324. [Google Scholar] [CrossRef]
- Cortés, J.C.; Navarro-Quiles, A.; Romero, J.V.; Roselló, M.D. Analysis of Random Non-Autonomous Logistic-Type Differential Equations via the Karhunen–Loève Expansion and the Random Variable Transformation Technique. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 121–138. [Google Scholar] [CrossRef]
- Doane, D.P.; Seward, L.E. Estatística Aplicada à Administração e Economia; AMGH: Porto Alegre, Brazil, 2014. [Google Scholar]
- Nassar, M.; Afify, A.Z.; Dey, S.; Kumar, D. A New Extension of Weibull Distribution: Properties and Different Methods of Estimation. J. Comput. Appl. Math. 2018, 336, 439–457. [Google Scholar] [CrossRef]
- Ai, Y.; Zhu, S.P.; Liao, D.; Correia, J.A.F.O.; Souto, C.; Jesus, A.M.P.; Keshtegar, B. Probabilistic Modeling of Fatigue Life Distribution and Size e Ff Ect of Components with Random Defects. Int. J. Fatigue 2019, 126, 165–173. [Google Scholar] [CrossRef]
- Diop, A.; Diop, A.; Dupuy, J.F. Simultaneous Confidence Bands in a Zero-Inflated Regression Model for Binary Data. Random Oper. Stoch. Equ. 2022, 30, 85–96. [Google Scholar] [CrossRef]
- Unal, C.; Cakmakyapan, S.; Ozel, G. Alpha Power Transformed Extended Exponential Distribution: Properties and Applications. J. Sci. 2018, 31, 954–965. [Google Scholar]
- Eghwerido, J.T.; Nzei, L.C.; David, I.J.; Adubisi, O.D. The Gompertz Extended Generalized Exponential Distribution: Properties and Applications. Commun. Fac. Sci. Univ. Ankara-Series A1 Math. Stat. 2020, 69, 739–753. [Google Scholar] [CrossRef]
- Fazlollahtabar, H. Triple State Reliability Measurement for a Complex Autonomous Robot System Based on Extended Triangular Distribution. Meas. J. Int. Meas. Confed. 2019, 139, 122–126. [Google Scholar] [CrossRef]
- Westerberg, I.K.; Sikorska-Senoner, A.E.; Viviroli, D.; Vis, M.; Seibert, J. Hydrological Model Calibration with Uncertain Discharge Data. Hydrol. Sci. J. 2020, 67, 2441–2456. [Google Scholar] [CrossRef]
- Garthwaite, P.H.; Kadane, J.B.; O’Hagan, A. Statistical Methods for Eliciting Probability Distributions. J. Am. Stat. Assoc. 2005, 100, 680–701. [Google Scholar] [CrossRef]
- Schweier, J.; Magagnotti, N.; Labelle, E.R.; Athanassiadis, D. Sustainability Impact Assessment of Forest Operations: A Review. Curr. For. Rep. 2019, 5, 101–113. [Google Scholar] [CrossRef]
- Mousavi, R. Time Consumption, Productivity, and Cost Analysis of Skidding in the Hyrcanian Forest in Iran. J. For. Res. 2012, 23, 691–697. [Google Scholar] [CrossRef]
- Orlovský, L.; Messingerová, V.; Danihelová, Z. Analysis of the Time Efficiency of Skidding Technology Based on the Skidders. Cent. Eur. For. J. 2020, 66, 177–187. [Google Scholar] [CrossRef]
- Soman, H.; Kizha, A.R.; Roth, B.E. Impacts of Silvicultural Prescriptions and Implementation of Best Management Practices on Timber Harvesting Costs. Int. J. For. Eng. 2019, 30, 14–25. [Google Scholar] [CrossRef]
- Duka, A.; Poršinsky, T.; Pentek, T.; Pandur, Z.; Vusić, D.; Papa, I. Mobility Range of a Cable Skidder for Timber Extraction on Sloped Terrain. Forests 2018, 9, 526. [Google Scholar] [CrossRef]
- Egan, A.; Baumgras, J. Ground Skidding and Harvested Stand Attributes in Appalachian Hardwood Stands in West Virginia. For. Prod. J. 2003, 53, 59–63. [Google Scholar]
- Kim, Y.; Chung, W.; Han, H.; Anderson, N.M. Effect of Downed Trees on Harvesting Productivity and Costs in Beetle-Killed Stands. For. Sci. 2017, 63, 596–605. [Google Scholar] [CrossRef]
- Alves, G.; Schelbauer, A.A.; Santos, A.; Robert, R.C. Desempenho Do Skidder Em Três Condições de Relevo Na Extração de Madeira. Encicl. Biosf. 2014, 10, 732–742. [Google Scholar]
- Akay, A.E.; Erdas, O.; Sessions, J. Determining Productivity of Mechanized Harvesting Machines. J. Appl. Sci. 2004, 4, 100–105. [Google Scholar] [CrossRef]
- Hogg, G.A.; Pulkki, R.E.; Ackerman, P.A. Multi-Stem Mechanized Harvesting Operation Analysis—Application of Arena 9 Discrete-Event Simulation Software in Zululand, South Africa. Int. J. For. Eng. 2010, 21, 14–22. [Google Scholar] [CrossRef]
- Maia, C.E.; de Morais, E.R.; Oliveira, M.d. Nível Crítico Pelo Critério Da Distribuição Normal Reduzida: Uma Nova Proposta Para Interpretação de Análise Foliar. Rev. Bras. Eng. Agrícola Ambient. 2001, 5, 235–238. [Google Scholar] [CrossRef]
- Satheesh Kumar, C.; Anila, G.V. On a Flexible Class of Asymmetric Mixture Normal Distribution and Its Applications. Random Oper. Stoch. Equ. 2023, 31, 1–8. [Google Scholar] [CrossRef]
- Pyrcz, M.J.; Deutsch, C.V. Geostatistical Reservoir Modeling; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Yu, H.; Hutson, A.D. A Robust Spearman Correlation Coefficient Permutation Test. Commun. Stat.—Theory Methods 2024, 53, 2141–2153. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Clemen, R.; Reilly, T. Making Hard Decisions with Decision Tools, 3rd ed.; Cengage Learning: Mason, OH, USA, 2014. [Google Scholar]
- Härdle, W.K.; Simar, L. Applied Multivariate Statistical Analysis; Springer: New York, NY, USA, 2015. [Google Scholar]
- O’Grady, K.E. Measures of Explained Variance: Cautions and Limitations. Psychol. Bull. 1982, 92, 766–777. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Mildemberg, C.; Sella Marques Dias, L.M. Números Atuais Da Certificação Florestal No Brasil. BIOFIX Sci. J. 2022, 7, 1. [Google Scholar] [CrossRef]
- Araujo, M.; Kant, S.; Couto, L. Why Brazilian Companies Are Certifying Their Forests? For. Policy Econ. 2009, 11, 579–585. [Google Scholar] [CrossRef]
- Frey, G.E.; Cubbage, F.W.; Holmes, T.P.; Reyes-Retana, G.; Davis, R.R.; Megevand, C.; Rodríguez-Paredes, D.; Kraus-Elsin, Y.; Hernández-Toro, B.; Chemor-Salas, D.N. Competitiveness, Certification, and Support of Timber Harvest by Community Forest Enterprises in Mexico. For. Policy Econ. 2019, 107, 101923. [Google Scholar] [CrossRef]
- Miyata, E.S. Determining Fixed and Operating Costs of Logging Equipment; U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1980. [Google Scholar]
- Freitas, L.C.; de Marques, G.M.; Silva, M.L.; da Machado, R.R.; Machado, C.C. Estudo Comparativo Envolvendo Três Métodos de Cálculo de Custo Operacional Do Caminhão Bitrem. Rev. Árvore 2004, 28, 855–863. [Google Scholar] [CrossRef]
- Cinca, A.L. Econometria, 2nd ed.; McGraw-Hill Interamericana de España: Madrid, Spain, 1993. [Google Scholar]
- Morettin, P.A. Econometria Financeira: Um Curso Em Séries Temporais Financeiras, 3rd ed.; Blucher: São Paulo, Brazil, 2017. [Google Scholar]
- Santos, L.N.; dos Fernades, H.C.; Silva, M.L.; da Teixeira, M.M.; Souza, A.P.d. Avaliação de custos da operação de extração da madeira com forwarder. Cerne 2016, 22, 27–34. [Google Scholar] [CrossRef]
- Miyajima, R.H.; Tonin, R.P.; Fenner, P.T.; Simões, D. Análise quantitativa do risco técnico-econômico de um trator florestal skidder. BIOFIX Sci. J. 2017, 2, 12–15. [Google Scholar] [CrossRef]
- Machado, C.C.; Malinovski, J.R. Ciência do Trabalho Florestal; UFV: Viçosa, Brazil, 1988. [Google Scholar]
- Lopes, E.S.; Oliveira, D.; de Sampietro, J.A. Influence of wheeled types of a skidder on productivity and cost of the forest harvesting. Floresta 2013, 44, 53–62. [Google Scholar] [CrossRef]
- Daniel, W.W. Applied Nonparametric Statistics; Houghton-Mifflin: Boston, MA, USA, 1978. [Google Scholar]
- Efromovich, S. Nonparametric Curve Estimation: Methods, Theory and Applications; Springer: Albuquerque, NM, USA, 1999. [Google Scholar]
- Statistics Canada. Available online: https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch10/5214862-eng.htm (accessed on 13 October 2024).
Factor | Unit | Value |
---|---|---|
Initial investment | USD | 296,330.68 |
Residual value | USD | 59,266.14 |
Fuel consumption | L h−1 | 25.92 |
Fuel price | USD L | 1.24 |
Rated motor power | kW | 149 |
Economic life | h | 30,000 |
Number of days worked per year | d | 283 |
Number of shifts per day | d | 3 |
Scheduled hours per shift | h | 8 |
Utilization rate | % | 74.0 |
Estimated service life of the tire set | h | 5000 |
Operator’s basic salary | USD h−1 | 13.93 |
Social charges | % | 134.0 |
SD 0–50 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Normal | −∞ | +∞ | 0.6204 | 0.6204 | 0.2237 | 0.2524 | 0.9884 | 1.9576 | 0.0835 | |
TL | Triangular | 0.2333 | 1.8690 | 0.7786 | 0.2333 | 0.3855 | 0.2747 | 1.5032 | 24.0973 | 0.1264 | |
BL | Exponential | 0.0795 | +∞ | 0.5097 | 0.0795 | 0.4302 | 0.1016 | 1.3682 | 14.6578 | 0.1158 | |
BU | Uniform | 0.0614 | 0.5219 | 0.2917 | - | 0.1329 | 0.0844 | 0.4989 | −25.0239 | 0.3300 | |
SD 51–100 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Uniform | 0.5306 | 1.9028 | 1.2167 | - | 0.3961 | 0.5992 | 1.8342 | 22.2593 | 0.1371 | |
TL | Normal | −∞ | +∞ | 1.2278 | 1.2278 | 0.2838 | 0.7610 | 1.6945 | 13.0042 | 0.0729 | |
BL | Laplace | −∞ | +∞ | 0.6000 | 0.6000 | 0.2511 | 0.1912 | 1.0088 | 4.6411 | 0.1164 | |
BU | Exponential | 0.0753 | +∞ | 0.2594 | 0.0753 | 0.1841 | 0.0848 | 0.6267 | −23.5842 | 0.3206 | |
SD 101–150 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Uniform | 1.0897 | 2.7769 | 1.9333 | - | 0.4870 | 1.1741 | 2.6926 | 34.8368 | 0.2185 | |
TL | Triangular | 1.1333 | 3.0825 | 1.7831 | 1.1333 | 0.4594 | 1.1827 | 2.6467 | 37.6380 | 0.1478 | |
BL | Logistic | −∞ | +∞ | 0.6927 | 0.6927 | 0.1803 | 0.4000 | 0.9853 | −7.4970 | 0.0878 | |
BU | Exponential | 0.0785 | +∞ | 0.2094 | 0.0785 | 0.1309 | 0.0852 | 0.4705 | −47.2225 | 0.2655 | |
SD 151–200 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Triangular | 1.7667 | 2.7876 | 2.1070 | 1.7667 | 0.2406 | 1.7925 | 2.5593 | 3.8946 | 0.2176 | |
TL | Triangular | 1.4670 | 2.7000 | 2.2890 | 2.7000 | 0.2906 | 1.7427 | 2.6688 | 7.4209 | 0.1465 | |
BL | Normal | −∞ | +∞ | 0.7852 | 0.7852 | 0.3021 | 0.2882 | 1.2821 | 7.3910 | 0.1829 | |
BU | Exponential | 0.0891 | +∞ | 0.1653 | 0.0891 | 0.0762 | 0.0930 | 0.3174 | −16.1514 | 0.4383 |
DA 0–50 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Weibull | 0.0992 | +∞ | 0.6670 | 0.5424 | 0.3034 | 0.2390 | 1.2227 | 54.1309 | 0.0543 | |
TL | Gama | 0.1154 | +∞ | 0.5293 | 0.3792 | 0.2492 | 0.2199 | 1.0055 | −7.9507 | 0.0586 | |
BL | Exponential | 0.0642 | +∞ | 0.3423 | 0.0642 | 0.2781 | 0.0784 | 0.8974 | −51.2124 | 0.1130 | |
BU | Exponential | 0.0477 | +∞ | 0.3023 | 0.0477 | 0.2546 | 0.0608 | 0.8105 | −70.9973 | −0.1572 | |
DA 51–100 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Triangular | 0.4857 | 1.5974 | 0.9777 | 0.8500 | 0.2314 | 0.6280 | 1.3935 | 1.5935 | 0.0755 | |
TL | Triangular | 0.2910 | 3.1845 | 1.4363 | 0.8333 | 0.6279 | 0.5711 | 2.6013 | 13.8607 | 0.0712 | |
BL | Exponential | 0.0935 | +∞ | 0.5471 | 0.0935 | 0.4536 | 0.1168 | 1.4523 | 39.8126 | 0.1051 | |
BU | Triangular | 0.0833 | 0.7126 | 0.2931 | 0.0833 | 0.1483 | 0.0993 | 0.5719 | −67.8813 | 0.2165 | |
DA 101–150 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Triangular | 0.6726 | 2.6391 | 1.4539 | 1.0500 | 0.4261 | 0.8652 | 2.2438 | 51.6372 | 0.0911 | |
TL | Triangular | 0.6525 | 3.6176 | 2.0178 | 1.7833 | 0.6109 | 1.0620 | 3.0961 | 88.8248 | 0.1392 | |
BL | Exponential | 0.0975 | +∞ | 0.9388 | 0.0975 | 0.8413 | 0.1407 | 2.6178 | 82.3601 | 0.1655 | |
BU | Triangular | 0.0833 | 0.9798 | 0.3821 | 0.0833 | 0.2113 | 0.1060 | 0.7793 | −15.2818 | 0.1750 | |
DA 151–200 m | ME | Distribuition | Minimum | Maximum | Mean | Modal | S.D. | Percentile 5 | Percentile 95 | BIC | K-S |
ET | Logistic | −∞ | +∞ | 1.8272 | 1.8272 | 0.4864 | 1.0375 | 2.6168 | 49.1824 | 0.1259 | |
TL | Triangular | 1.5333 | 4.3931 | 2.4866 | 1.5333 | 0.6741 | 1.6057 | 3.7536 | 58.8751 | 0.1248 | |
BL | Triangular | 0.1500 | 2.4588 | 0.9196 | 0.1500 | 0.5442 | 0.2085 | 1.9425 | 46.8646 | 0.2463 | |
BU | Exponential | 0.0765 | +∞ | 0.2748 | 0.0765 | 0.1983 | 0.0867 | 0.6705 | −27.1150 | 0.2675 |
Slope Classes | Skidding Distance Ranges (m) | Mean Productivity (m3 h−1) | Probability Distribution |
---|---|---|---|
SC 1 | 0–50 | 149.01 ± 63.62 | Normal |
51–100 | 129.55 ± 29.34 | Normal | |
101–150 | 100.37 ± 22.43 | Normal | |
151–200 | 78.48 ± 16.37 | Normal | |
SC 2 | 0–50 | 111.52 ± 55.69 | Normal |
51–100 | 83.31 ± 19.28 | Normal | |
101–150 | 68.35 ± 27.18 | Normal | |
151–200 | 58.53 ± 21.92 | Normal |
Descriptive Statistics | Depreciation | Return on Capital | Insurance | Shelter | Property Taxes | Grapple Skidder Transportation | Fuel | Lubricating Oil and Grease | Maintenance and Repair | Pneumatic | Labor with Operator | Overheads |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 6.60 | 2.93 | 0.97 | 0.24 | 0.48 | 0.29 | 19.86 | 3.97 | 8.64 | 2.21 | 21.32 | 3.38 |
Maximum | 8.91 | 3.97 | 1.31 | 0.33 | 0.65 | 0.39 | 26.82 | 5.36 | 11.68 | 2.99 | 28.83 | 4.56 |
Mean | 7.76 | 3.45 | 1.14 | 0.28 | 0.57 | 0.34 | 23.34 | 4.67 | 10.16 | 2.60 | 25.08 | 3.97 |
Standard deviation | 0.47 | 0.21 | 0.07 | 0.02 | 0.03 | 0.02 | 1.43 | 0.29 | 0.62 | 0.16 | 1.54 | 0.24 |
Asymmetry | 0.003 | 0.003 | −0.005 | −0.001 | 0.005 | −0.003 | −0.001 | −0.005 | 0.002 | 0.007 | 0.001 | −0.003 |
Kurtosis | 2.40 | 2.40 | 2.40 | 2.40 | 2.40 | 2.38 | 2.41 | 2.40 | 2.40 | 2.39 | 2.41 | 2.40 |
Percentiles | ||||||||||||
5% | 6.96 | 3.10 | 1.02 | 0.26 | 0.51 | 0.31 | 20.94 | 4.19 | 9.12 | 2.33 | 22.50 | 3.56 |
15% | 7.23 | 3.22 | 1.06 | 0.26 | 0.53 | 0.32 | 21.76 | 4.35 | 9.47 | 2.42 | 23.38 | 3.70 |
25% | 7.42 | 3.30 | 1.09 | 0.27 | 0.54 | 0.33 | 22.32 | 4.46 | 9.72 | 2.48 | 23.98 | 3.79 |
35% | 7.56 | 3.37 | 1.11 | 0.28 | 0.55 | 0.33 | 22.77 | 4.55 | 9.91 | 2.54 | 24.46 | 3.87 |
45% | 7.70 | 3.42 | 1.13 | 0.28 | 0.56 | 0.34 | 23.16 | 4.63 | 10.08 | 2.58 | 24.88 | 3.94 |
55% | 7.81 | 3.48 | 1.15 | 0.29 | 0.57 | 0.34 | 23.52 | 4.70 | 10.24 | 2.62 | 25.27 | 4.00 |
65% | 7.95 | 3.53 | 1.17 | 0.29 | 0.58 | 0.35 | 23.91 | 4.78 | 10.41 | 2.66 | 25.69 | 4.07 |
75% | 8.10 | 3.60 | 1.19 | 0.30 | 0.59 | 0.36 | 24.35 | 4.87 | 10.61 | 2.71 | 26.17 | 4.14 |
85% | 8.28 | 3.69 | 1.21 | 0.30 | 0.61 | 0.36 | 24.91 | 4.98 | 10.85 | 2.78 | 26.78 | 4.24 |
95% | 8.55 | 3.81 | 1.25 | 0.31 | 0.63 | 0.38 | 25.72 | 5.14 | 11.21 | 2.87 | 27.66 | 4.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, D.; da Silva, R.B.G.; Miyajima, R.H.; Avelino, L.T.; Barreiros, R.M. Impact of Skidding and Slope on Grapple Skidder Productivity and Costs: A Monte Carlo Simulation in Eucalyptus Plantations. Forests 2024, 15, 1890. https://doi.org/10.3390/f15111890
Simões D, da Silva RBG, Miyajima RH, Avelino LT, Barreiros RM. Impact of Skidding and Slope on Grapple Skidder Productivity and Costs: A Monte Carlo Simulation in Eucalyptus Plantations. Forests. 2024; 15(11):1890. https://doi.org/10.3390/f15111890
Chicago/Turabian StyleSimões, Danilo, Richardson Barbosa Gomes da Silva, Ricardo Hideaki Miyajima, Lara Tatiane Avelino, and Ricardo Marques Barreiros. 2024. "Impact of Skidding and Slope on Grapple Skidder Productivity and Costs: A Monte Carlo Simulation in Eucalyptus Plantations" Forests 15, no. 11: 1890. https://doi.org/10.3390/f15111890
APA StyleSimões, D., da Silva, R. B. G., Miyajima, R. H., Avelino, L. T., & Barreiros, R. M. (2024). Impact of Skidding and Slope on Grapple Skidder Productivity and Costs: A Monte Carlo Simulation in Eucalyptus Plantations. Forests, 15(11), 1890. https://doi.org/10.3390/f15111890