Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Measurements
2.3.1. Sample Collection
2.3.2. Measurements
2.4. Statistical Analysis
3. Results
3.1. Rubber Yield and Latex Parameters
3.2. Nitrogen Nutrition
3.3. Particle Size and Molecular Weight of NR
3.4. Natural Rubber Properties
3.5. Relationship Between Nitrogen Nutrition and Natural Rubber Properties
3.6. Principle Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Cluster Analysis of Nitrogen Nutrition and Rubber Properties
4. Discussion
4.1. Effects of Various Fertilization Treatments on the Yield and Property of Natural Rubber
4.2. Effects of Different Fertilization Treatments on Nitrogen Nutrition in the Soil–Natural Rubber System
4.3. Potential Correlations Between Nitrogen Levels and Natural Rubber Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CN | chemical nitrogen fertilizer |
ON | organic nitrogen fertilizer |
NR | natural rubber |
CK | control |
LN | low nitrogen |
MN | medium nitrogen |
HN | high nitrogen |
ON30% | 30% organic nitrogen replacement |
ON50% | 50% organic nitrogen replacement |
DRC | dry rubber content |
Suc | sucrose |
Pi | inorganic phosphorus |
Mn | number-average molecular weight |
Mw | weight-average molecular weight |
P0 | Wallace plasticity |
PRI | plasticity retention index |
VR | Mooney viscosity |
References
- Cherian, S.; Ryu, S.B.; Cornish, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 2019, 17, 2041–2061. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Characterizing the naturally occurring sacrificial bond within natural rubber. Polymer 2019, 161, 41–48. [Google Scholar] [CrossRef]
- Oouchi, M.; Ukawa, J.; Ishii, Y.; Maeda, H. Structural Analysis of the Terminal Groups in Commercial Hevea Natural Rubber by 2D-NMR with DOSY Filters and Multiple-WET Methods Using Ultrahigh-Field NMR. Biomacromolecules 2019, 20, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Dias, Y.J.; Yarin, A.L. Electrically-assisted supersonic solution blowing and solution blow spinning of fibrous materials from natural rubber extracted from Havea brasilienses. Ind. Crops Prod. 2023, 192, 116101. [Google Scholar] [CrossRef]
- Sakdapipanich, J.; Rojruthai, P. Molecular structure of natural rubber and its characteristics based on recent evidence. Biotechnol. Mol. Stud. Nov. Appl. Improv. Qual. Hum. Life 2012, 213, 214–238. [Google Scholar] [CrossRef]
- Liao, L.-S.; He, C.-Z.; Zhao, Y.-F.; Chen, Y.-P.; Li, Y.-M.; Liao, J.-H. Curing Kinetics and Properties of Natural Rubber Coagulated Using Microwave Radiation. Rubber Chem. Technol. 2014, 87, 43–52. [Google Scholar] [CrossRef]
- Kosugi, K.; Kawahara, S. Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym. Sci. 2014, 293, 135–141. [Google Scholar] [CrossRef]
- Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Kawahara, S. Effect of non-rubber components on the mechanical properties of natural rubber. Polym. Adv. Technol. 2017, 28, 159–165. [Google Scholar] [CrossRef]
- Xu, T.; Jia, Z.; Wu, L.; Chen, Y.; Luo, Y.; Jia, D.; Peng, Z. Effect of acetone extract from natural rubber on the structure and interface interaction in NR/CB composites. RSC Adv. 2017, 7, 26458–26467. [Google Scholar] [CrossRef]
- Galiani, P.D.; Martins, M.A.; de Souza Gonçalves, P.; McMahan, C.M.; Capparelli Mattoso, L.H. Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber. J. Appl. Polym. Sci. 2011, 122, 2749–2755. [Google Scholar] [CrossRef]
- Chotiphan, R.; Vaysse, L.; Lacote, R.; Gohet, E.; Thaler, P.; Sajjaphan, K.; Bottier, C.; Char, C.; Liengprayoon, S.; Gay, F. Can fertilization be a driver of rubber plantation intensification? Ind. Crops Prod. 2019, 141, 111813. [Google Scholar] [CrossRef]
- Jia, R.; Zhou, J.; Chu, J.; Shahbaz, M.; Yang, Y.; Jones, D.L.; Zang, H.; Razavi, B.S.; Zeng, Z. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: A case study from the North China Plain. J. Clean. Prod. 2022, 362, 132265. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Puntel, L.A.; Sawyer, J.E.; Everingham, Y.L.; Archontoulis, S.V. The nitrogen fertilizer conundrum: Why is yield a poor determinant of crops’ nitrogen fertilizer requirements? Agron. Sustain. Dev. 2024, 44, 18. [Google Scholar] [CrossRef]
- Liu, M.; Xu, F.; Xu, X.; Wanek, W.; Yang, X. Age alters uptake pattern of organic and inorganic nitrogen by rubber trees. Tree Physiol. 2018, 38, 1685–1693. [Google Scholar] [CrossRef]
- Xia, G.; Wang, Y.; Hu, J.; Wang, S.; Zhang, Y.; Wu, Q.; Chi, D. Effects of Supplemental Irrigation on Water and Nitrogen Use, Yield, and Kernel Quality of Peanut under Nitrogen-Supplied Conditions. Agric. Water Manag. 2021, 243, 106518. [Google Scholar] [CrossRef]
- Nurmanov, Y.T.; Chernenok, V.G.; Kuzdanova, R.S. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Res. 2019, 231, 115–121. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, Y.; Yu, Q.; Cao, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; Zhu, X. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agric. Ecosyst. Environ. 2023, 349, 108445. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, G.; Chang, D.; Liang, H.; Nie, J.; Liao, Y.; Lu, Y.; Xu, C.; Liu, J.; Wu, J.; et al. Southern China can produce more high-quality rice with less N by green manuring. Resour. Conserv. Recycl. 2023, 196, 107025. [Google Scholar] [CrossRef]
- Malmonge, J.A.; Camillo, E.C.; Moreno, R.M.B.; Mattoso, L.H.C.; McMahan, C.M. Comparative study on the technological properties of latex and natural rubber from Hancornia speciosa Gomes and Hevea brasiliensis. J. Appl. Polym. Sci. 2008, 111, 2986–2991. [Google Scholar] [CrossRef]
- Ferreira, M.; Moreno, R.M.B.; Goncalves, P.S. Evaluation of natural rubber from clones of Hevea brasiliensis. Rubber Chem. Technol. 2002, 75, 171–177. [Google Scholar] [CrossRef]
- Dai, L.; Kang, G.; Li, Y.; Nie, Z.; Duan, C.; Zeng, R. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). Plant Mol. Biol. 2013, 82, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, Y.; Wu, M.; Wang, D.; Wei, J.; Wu, B.; Wang, G.; Wu, W.; Jin, X.; Wang, X.; et al. Physiological and Proteomic Analyses of Molybdenum- and Ethylene-Responsive Mechanisms in Rubber Latex. Front. Plant Sci. 2018, 9, 621. [Google Scholar] [CrossRef] [PubMed]
- Ichihashi, Y.; Date, Y.; Shino, A.; Shimizu, T.; Shibata, A.; Kumaishi, K.; Funahashi, F.; Wakayama, K.; Yamazaki, K.; Umezawa, A.; et al. Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proc. Natl. Acad. Sci. USA 2020, 117, 14552–14560. [Google Scholar] [CrossRef] [PubMed]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Wu, J.; Sha, C.; Wang, M.; Ye, C.; Li, P.; Huang, S. Effect of Organic Fertilizer on Soil Bacteria in Maize Fields. Land 2021, 10, 328. [Google Scholar] [CrossRef]
- Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. GCB Bioenergy 2022, 14, 481–495. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Xia, L.; Fan, C.; Xiong, Z. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. J. Clean. Prod. 2019, 225, 984–994. [Google Scholar] [CrossRef]
- Dai, X.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z.; Yao, Y.; et al. Partial substitution of chemical nitrogen with organic nitrogen improves rice yield, soil biochemical indictors and microbial composition in a double rice cropping system in south China. Soil Tillage Res. 2021, 205, 104753. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C.; et al. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Jiang, Z.; Yue, X.; Liang, J.; Yang, Q.; Li, J.; Li, N. Micro-moistening irrigation combined with bio-organic fertilizer: An adaptive irrigation and fertilization strategy to improve soil environment, edible Rose yield, and nutritional quality. Ind. Crops Prod. 2023, 196, 116487. [Google Scholar] [CrossRef]
- Yang, J.; Mattoo, A.K.; Liu, Y.; Zvomuya, F.; He, H. Trade-offs of organic and organic-inorganic fertilizer combinations in tomato quality and yield: A global meta-analysis (1992–2021). Eur. J. Agron. 2023, 151, 126985. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Biochem. 1956, 28, 350–360. [Google Scholar] [CrossRef]
- Boyne, A.F.; Ellman, G.L. A methodology for analysis of tissue sulfhydryl components. Anal. Biochem. 1972, 46, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Taussky, H.H.; Shorr, E.; Kurzmann, G. A Microcolorimetric Method for the Determination of Inorganic Phosphorus. J. Biol. Chem. 1953, 202, 675–685. [Google Scholar] [CrossRef] [PubMed]
- NY/T 1121.24-2012; Soil Testing. Part 24: Determination of Total Soil Nitrogen. Automatic Nitrogen Determiner Method. National Standard of the People’s Republic of China: Beijing, China, 2012. (In Chinese)
- GB/T 3510-2006; Determination of Plasticity of Unvulcanized Rubber by Rapid Plastometer Method. State Administration for Market Regulation, National Standardization Administration of China: Beijing, China, 2006. (In Chinese)
- GB/T 3517-2022; Determination of Plasticity Retention (PRI) of Natural Rubber. State Administration for Market Regulation, National Standardization Administration of China: Beijing, China, 2022. (In Chinese)
- GB/T 1232.1-2016; Determination of unvulcanized rubber using a disc shear viscometer Part 1: Determination of Mooney viscosity. State Administration for Market Regulation, National Standardization Administration of China: Beijing, China, 2016. (In Chinese)
- GB/T 528-2009; Determination of Tensile Stress and Strain Properties of Vulcanized Rubber or Thermoplastic Rubber. State Administration for Market Regulation, National Standardization Administration of China: Beijing, China, 2009. (In Chinese)
- GB/T 529-2008; Determination of Tear Strength (Trouser, Angle and Crescent Test Pieces) of Vulcanized Rubber or Thermoplastic Rubber. State Administration for Market Regulation, National Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- NY/T 459-2022; Natural Raw Rubber Radial Tire Rubber. National Standard of the People’s Republic of China: Beijing, China, 2022. (In Chinese)
- NY/T 733-2003; Natural Rubber Aviation Tire Standard Rubber. National Standard of the People’s Republic of China: Beijing, China, 2003. (In Chinese)
- Zhao, T.; He, A.; Khan, M.N.; Yin, Q.; Song, S.; Nie, L. Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions. J. Integr. Agric. 2024, 23, 93–107. [Google Scholar] [CrossRef]
- Gashua, A.G.; Sulaiman, Z.; Mohammad Yusoff, M.; Abd Samad, M.Y.; Ramlan, M.F.; Mokhatar, S.J. Short-Term Effects of Bokashi Fertilizer with Reduced NPK Fertilization on Soil Fertility, Growth, and Yield of Rubber Trees. Pertanika J. Trop. Agric. Sci. 2023, 46, 839–859. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Lin, Q.; Cha, Z.; Luo, W. Response of bacterial communities in rubber plantations to different fertilizer treatments. 3 Biotech 2019, 9, 293. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Tang, S.; Yang, Q.; Meng, L.; Wu, Y.; Wang, J.; Wu, L.; Wu, M.; Xue, X.; et al. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Appl. Soil Ecol. 2023, 182, 104691. [Google Scholar] [CrossRef]
- Nun-anan, P.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Nakason, C. Novel approach to determine non-rubber content in Hevea brasiliensis: Influence of clone variation on properties of un-vulcanized natural rubber. Ind. Crops Prod. 2018, 118, 38–47. [Google Scholar] [CrossRef]
- Jong, L. Modulus enhancement of natural rubber through the dispersion size reduction of protein/fiber aggregates. Ind. Crops Prod. 2014, 55, 25–32. [Google Scholar] [CrossRef]
- Jong, L. Influence of protein hydrolysis on the mechanical properties of natural rubber composites reinforced with soy protein particles. Ind. Crops Prod. 2015, 65, 102–109. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Xia, J.-H.; Zhang, L.; Zheng, T.-T.; Liao, S. Influence of non-rubber components on film formation behavior of natural rubber latex. Colloid Polym. Sci. 2020, 298, 1263–1271. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Zhu, D.; Xie, W.-Y.; Xia, J.-H.; He, M.-F.; Liao, S. In-situ observation of spatial organization of natural rubber latex particles and exploring the relationship between particle size and mechanical properties of natural rubber. Ind. Crops Prod. 2022, 180, 114737. [Google Scholar] [CrossRef]
- Kim, C.; Beuve, J.S.; Guilbert, S.; Bonfils, F. Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS). Eur. Polym. J. 2009, 45, 2249–2259. [Google Scholar] [CrossRef]
- Luo, M.-C.; Zeng, J.; Fu, X.; Huang, G.; Wu, J. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21–28. [Google Scholar] [CrossRef]
- Silva, M.J.; Claro, P.I.C.; da Silva, J.C.; Scaloppi Júnior, E.J.; de Souza Gonçalves, P.; Martins, M.A.; Mattoso, L.H.C. Evaluation of the physicochemical properties of natural rubber from Hevea brasiliensis clones. Ind. Crops Prod. 2021, 171, 113925. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Liu, G.-X.; Zhang, H.-F.; Zhao, F.; Luo, M.-C.; Liao, S. Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 2019, 183, 121911. [Google Scholar] [CrossRef]
- Promsung, R.; Nakaramontri, Y.; Uthaipan, N.; Kummerloewe, C.; Johns, J.; Vennemann, N.; Kalkornsurapranee, E. Effects of protein contents in different natural rubber latex forms on the properties of natural rubber vulcanized with glutaraldehyde. Express Polym. Lett. 2021, 15, 308–318. [Google Scholar] [CrossRef]
Treatments | Organic Nitrogen (N) | Chemical Nitrogen (N) | Phosphorus (P2O5) | Potassium (K2O) |
---|---|---|---|---|
CK | 0 | 0 | 120 | 90 |
LN | 0 | 138 | 120 | 90 |
MN | 0 | 276 | 120 | 90 |
HN | 0 | 552 | 120 | 90 |
ON30% | 83 | 193 | 120 | 90 |
ON50% | 138 | 138 | 120 | 90 |
Treatments | Particle Size (nm) | Mn × 106 (g·mol−1) | Mw × 106 (g·mol−1) | Mw/Mn |
---|---|---|---|---|
CK | 355 ± 1a | 0.26 ± 0.00c | 1.39 ± 0.04b | 5.43 ± 0.05a |
LN | 362 ± 2a | 0.30 ± 0.02bc | 1.48 ± 0.04ab | 4.99 ± 0.25ab |
MN | 358 ± 3a | 0.33 ± 0.03ab | 1.48 ± 0.06ab | 4.51 ± 0.32bc |
HN | 359 ± 1a | 0.33 ± 0.01ab | 1.52 ± 0.01a | 4.68 ± 0.18bc |
ON30% | 359 ± 1a | 0.33 ± 0.01ab | 1.54 ± 0.03a | 4.62 ± 0.12bc |
ON50% | 342 ± 7b | 0.36 ± 0.01a | 1.57 ± 0.02a | 4.34 ± 0.07c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Cha, Z.; Li, J.; Huang, Y.; Yang, H.; Liu, H.; Luo, W.; Lin, Q. Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber. Forests 2024, 15, 1897. https://doi.org/10.3390/f15111897
Jin D, Cha Z, Li J, Huang Y, Yang H, Liu H, Luo W, Lin Q. Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber. Forests. 2024; 15(11):1897. https://doi.org/10.3390/f15111897
Chicago/Turabian StyleJin, Dongqi, Zhengzao Cha, Jianhong Li, Yanyan Huang, Hongzhu Yang, Hailin Liu, Wei Luo, and Qinghuo Lin. 2024. "Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber" Forests 15, no. 11: 1897. https://doi.org/10.3390/f15111897
APA StyleJin, D., Cha, Z., Li, J., Huang, Y., Yang, H., Liu, H., Luo, W., & Lin, Q. (2024). Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber. Forests, 15(11), 1897. https://doi.org/10.3390/f15111897