Stress Resistance of Rubber Trees: From Genetics to Ecosystem, 2nd Edition

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Genetics and Molecular Biology".

Deadline for manuscript submissions: 30 March 2025 | Viewed by 3272

Special Issue Editors


E-Mail Website
Guest Editor
Hainan Key Laboratory of Microbiological Resources, Institute of Tropical Bioscience and Biotechnology, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
Interests: environmental science; agricultural plant science; woody plant; genetics; molecular biology; biotechnology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
Interests: plant physiology and ecology; rubber tree cultivation physiology; abiotic stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
Interests: plant molecular biology; plant genome; plant stress biology; rubber tree breeding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Building upon the success and impact of the inaugural volume, we are thrilled to announce the establishment of the second volume of our Special Issue. As the global demand for natural rubber continues to soar, understanding and enhancing the stress resistance of rubber trees (Hevea brasiliensis) becomes ever more crucial for ensuring sustainable production and economic growth.

In the first volume, we delved into the significance of rubber trees as the primary source of natural rubber, their native habitat in the Amazon rainforest, and the challenges posed by environmental and biotic stresses in suboptimal cultivation regions, particularly Southeast Asia. These stresses significantly impact rubber tree physiology, photosynthesis and, ultimately, latex yield and plantation profitability.

The second volume of this Special Issue aims to further expand the discourse, exploring the latest research advancements and innovative strategies for enhancing rubber trees' stress resistance at multiple levels: from genetics and molecular biology to agronomic practices and ecosystem management.

We invite contributions that delve into the following key areas:

  1. Genetics and Molecular Biology of Stress Resistance: Uncovering the genetic basis of stress tolerance in rubber trees through genome-wide association studies, gene expression analyses and functional validation of candidate genes. This includes studies on the role of transcription factors, signaling pathways and metabolic networks in mediating stress responses.
  2. Biotic Stress Resistance: Addressing the threats posed by pathogens (such as powdery mildew, anthracnose and leaf blight disease) and pests (like leaf mites and root diseases). Contributions may focus on disease resistance mechanisms, host–pathogen interactions and the development of novel disease management strategies.
  3. Abiotic Stress Tolerance: Examining the responses of rubber trees to environmental stresses such as drought, cold, high solar radiation, soil salinity and heavy metal toxicity. Research exploring physiological adaptations, molecular mechanisms of stress tolerance and breeding programs aimed at developing resilient cultivars are welcome.
  4. Agronomic Practices and Ecosystem Management: Highlighting sustainable farming practices that mitigate stress impacts and promote healthy rubber tree growth. This includes studies on irrigation and fertilization strategies, soil management, integrated pest management and the role of biodiversity in enhancing ecosystem resilience.
  5. Translational Research and Implementation: Showcasing the translation of laboratory findings into field-ready solutions. Contributions could feature case studies, best practices and policy recommendations for rubber-producing nations to adopt eco-friendly practices and genetically improved cultivars.

By bringing together researchers from diverse disciplines, this Special Issue aims to foster interdisciplinary collaborations and accelerate the pace of innovation in rubber tree stress resistance research. We believe that our collective efforts will pave the way for more sustainable and resilient rubber production systems, benefiting both the environment and the global economy.

We cordially invite you to submit your original research articles, review articles and short communications that align with the scope of this Special Issue, in efforts to advance the frontiers of knowledge in rubber tree stress resistance and contribute to a greener, more sustainable future.

Prof. Dr. Jiaming Zhang
Prof. Dr. Feng An
Prof. Dr. Han Cheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rubber tree genetics and breeding
  • Hevea brasiliensis
  • ethephon stimulation
  • molecular regulation mechanism
  • stress physiology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 5686 KiB  
Article
Genome-Wide Identification and Characterization of bHLH Gene Family in Hevea brasiliensis
by Zheng Wang, Yuan Yuan, Fazal Rehman, Xin Wang, Tingkai Wu, Zhi Deng and Han Cheng
Forests 2024, 15(11), 2027; https://doi.org/10.3390/f15112027 - 18 Nov 2024
Viewed by 351
Abstract
The basic helix-loop-helix (bHLH) transcription factors play crucial roles in plant growth, development, and stress responses. However, their identification and insights into the understanding of their role in rubber trees remain largely uncovered. In this study, the bHLH gene family was explored and [...] Read more.
The basic helix-loop-helix (bHLH) transcription factors play crucial roles in plant growth, development, and stress responses. However, their identification and insights into the understanding of their role in rubber trees remain largely uncovered. In this study, the bHLH gene family was explored and characterized in rubber trees using systematic bioinformatics approaches. In total, 180 bHLH genes were identified in the rubber tree genome, distributed unevenly across 18 chromosomes, and phylogenetic analysis classified these genes into 23 distinct subfamilies. Promoter regions revealed a high density of cis-elements responsive to light and hormones. Enrichment analysis indicated involvement in numerous biological processes, including growth, development, hormone responses, abiotic stress resistance, and secondary metabolite biosynthesis. Protein interaction network analysis identified extensive interactions between HbbHLH genes and other functional genes, forming key clusters related to iron homeostasis, plant growth, and stomatal development. Expression profiling of HbbHLH genes have demonstrated varied responses to endogenous and environmental changes. RT-qPCR of eleven HbbHLH genes in different tissues and under ethylene, jasmonic acid, and cold treatments revealed tissue-specific expression patterns and significant responses to these stimuli, highlighting the roles of these genes in hormone and cold stress responses. These findings establish a framework for exploring the molecular functions of bHLH transcription factors in rubber trees. Full article
Show Figures

Figure 1

19 pages, 5796 KiB  
Article
Reinforcing Nitrogen Nutrition Through Partial Substitution with Organic Nitrogen Enhances the Properties of Natural Rubber
by Dongqi Jin, Zhengzao Cha, Jianhong Li, Yanyan Huang, Hongzhu Yang, Hailin Liu, Wei Luo and Qinghuo Lin
Forests 2024, 15(11), 1897; https://doi.org/10.3390/f15111897 - 28 Oct 2024
Viewed by 575
Abstract
The partial substitution of chemical fertilizer with organic fertilizer is a crucial practice for enhancing crop production and quality, although its impact on natural rubber has rarely been explored. In this study, a two-year field experiment was conducted to investigate the impact of [...] Read more.
The partial substitution of chemical fertilizer with organic fertilizer is a crucial practice for enhancing crop production and quality, although its impact on natural rubber has rarely been explored. In this study, a two-year field experiment was conducted to investigate the impact of different nitrogen application rates and varying proportions of organic nitrogen substitution on dry rubber yield, nitrogen nutrition, and natural rubber properties. Regarding nitrogen application, the control treatment received no nitrogen amendment, while the low-nitrogen treatment was amended with 138 g·tree−1·year−1 of nitrogen. The medium-nitrogen treatment received 276 g·tree−1·year−1 of nitrogen, and the high-nitrogen treatment received 552 g·tree−1·year−1 of nitrogen. In addition, the low-organic-nitrogen substitution treatment and medium-organic-nitrogen substitution treatment were amended with 276 g·tree−1·year−1 of nitrogen each. The results demonstrated that the 50% organic nitrogen substitution treatment resulted in the highest dry rubber yield across all sampling periods, ranging from 46.43 to 94.65 g·tree−1. Additionally, this treatment exhibited superior soil total nitrogen (1067.69 mg·kg−1), available nitrogen (84.06 mg·kg−1), and nitrogen content in roots (1.08%), leaves (3.25%), fresh rubber latex (0.27%), and raw natural rubber (0.44%) compared with other treatments. In terms of the physical properties of natural rubber, the 50% organic nitrogen substitution treatment resulted in advantages in the weight-average molecular weight (1.57 × 106 g·mol−1), number-average molecular weight (0.36 × 106 g·mol−1), plasticity retention index (97.35%), Wallace plasticity (40.25), and Mooney viscosity (81.40). For mechanical properties, natural rubber from the substitution treatment exhibited higher tensile strength (19.84 MPa), greater elongation at break (834.75%), and increased tear strength (31.07 N·mm−1). Overall, the substitution of 50% chemical nitrogen fertilizer with organic nitrogen fertilizer improved nitrogen nutrition in rubber trees by introducing organic nitrogen input, resulting in remarkable enhancements in natural rubber properties. Therefore, the incorporation of organic fertilizer as a substitution for 50% of chemical fertilizer is demonstrated as an effective strategy for improving both the yield and properties of natural rubber. Full article
Show Figures

Graphical abstract

20 pages, 3039 KiB  
Article
Rubber-Based Agroforestry Ecosystems Enhance Soil Enzyme Activity but Exacerbate Microbial Nutrient Limitations
by Wenxian Xu, Yingying Zhang, Ashar Tahir, Yumiao Cao, Changgeng Kuang, Xinwei Guo, Rui Sun, Wenjie Liu, Zhixiang Wu and Qiu Yang
Forests 2024, 15(10), 1827; https://doi.org/10.3390/f15101827 - 19 Oct 2024
Viewed by 719
Abstract
Agroforestry ecosystems are an efficient strategy for enhancing soil nutrient conditions and sustainable agricultural development. Soil extracellular enzymes (EEAs) are important drivers of biogeochemical processes. However, changes in EEAs and chemometrics in rubber-based agroforestry systems and their mechanisms of action are still not [...] Read more.
Agroforestry ecosystems are an efficient strategy for enhancing soil nutrient conditions and sustainable agricultural development. Soil extracellular enzymes (EEAs) are important drivers of biogeochemical processes. However, changes in EEAs and chemometrics in rubber-based agroforestry systems and their mechanisms of action are still not fully understood. Distribution of EEAs, enzymatic stoichiometry, and microbial nutrient limitation characteristics of rubber plantations under seven planting patterns (RM, rubber monoculture system; AOM, Hevea brasiliensis-Alpinia oxyphylla Miq; PAR, Hevea brasiliensis-Pandanus amaryllifolius Roxb; AKH, Hevea brasiliensis-Alpinia katsumadai Hayata; CAA, Hevea brasiliensis-Coffea Arabica; CCA, Hevea brasiliensis-Cinnamomum cassia (L.) D. Don, and TCA, Hevea brasiliensis-Theobroma Cacao) were analyzed to investigate the metabolic limitations of microorganisms and to identify the primary determinants that restrict nutrient limitation. Compared with rubber monoculture systems, agroforestry ecosystems show increased carbon (C)-acquiring enzyme (EEAC), nitrogen (N)-acquiring enzyme (EEAN), and phosphorus (P)-acquiring enzyme (EEAP) activities. The ecoenzymatic stoichiometry model demonstrated that all seven plantation patterns experienced C and N limitation. Compared to the rubber monoculture system, all agroforestry systems exacerbated the microbial limitations of C and N by reducing the vector angle and increasing vector length. P limitation was not detected in any plantation pattern. In agroforestry systems, progression from herbs to shrubs to trees through intercropping results in a reduction in soil microbial nutrient constraints. This is primarily because of the accumulation of litter and root biomass in tree-based systems, which enhances the soil nutrient content (e.g., soil organic carbon, total nitrogen, total phosphorus, and ammonium nitrogen) and accessibility. Conversely, as soil depth increased, microbial nutrient limitations tended to become more pronounced. Partial least squares path modelling (PLS-PM) indicated that nutrient ratios and soil total nutrient content were the most important factors influencing microbial C limitation (−0.46 and 0.40) and N limitation (−0.30 and −0.42). This study presented novel evidence regarding the constraints and drivers of soil microbial metabolism in rubber agroforestry systems. Considering the constraints of soil nutrients and microbial metabolism, intercropping of rubber trees with arboreal species is recommended over that of herbaceous species to better suit the soil environment of rubber plantation areas on Hainan Island. Full article
Show Figures

Figure 1

21 pages, 5648 KiB  
Article
Photosynthesis and Latex Burst Characteristics in Different Varieties of Rubber Trees (Hevea brasiliensis) under Chilling Stress, Combing Bark Tensile Property and Chemical Component Analysis
by Linlin Cheng, Huichuan Jiang, Guishui Xie, Jikun Wang, Wentao Peng, Lijun Zhou and Feng An
Forests 2024, 15(8), 1408; https://doi.org/10.3390/f15081408 - 11 Aug 2024
Cited by 1 | Viewed by 1327
Abstract
Rubber trees (Hevea brasiliensis) serve as the primary source of natural rubber. Their native habitat is characterized by warm and humid conditions, so they are particularly sensitive to low temperatures. Under such stress, latex burst can cause severe damage to rubber [...] Read more.
Rubber trees (Hevea brasiliensis) serve as the primary source of natural rubber. Their native habitat is characterized by warm and humid conditions, so they are particularly sensitive to low temperatures. Under such stress, latex burst can cause severe damage to rubber trees, which is due to the uniqueness of their economically productive parts. In order to establish a correlation between young and mature rubber trees and provide a novel prospective for investigating the mechanisms of latex burst and chilling resistance in rubber trees, the chlorophyll contents, photosynthesis, and chlorophyll fluorescence parameters in four varieties of one-year-old rubber tree seedlings were analyzed under artificially simulated chilling stress. The latex burst characteristics were subsequently recorded. A comprehensive statistical analysis of the chilling-resistance rank was conducted using the membership function method and the combination weighting method. Meanwhile, chemical compositions and tensile properties of barks from two-year-old twigs of mature rubber trees were ascertained. A correlation analysis between chilling resistance, chemical compositions, and tensile properties was performed to identify any interrelationships among them. The results showed that the number and the total area of latex-burst positions in variety Reken628 seedlings were greater than those in other varieties, and the lowest number and total area of latex-burst positions were observed in variety RRIM600 and variety PR107, respectively. With the exception of variety GT1, nectar secretion was noted in all other varieties of rubber tree seedlings under chilling stress. The chilling resistance of the four varieties decreased in the following order: variety GT1 > variety RRIM600 > variety PR107 > variety Reken628. The chilling resistance was strongly (p < 0.001) negatively correlated with cellulose content and acid-insoluble lignin content, respectively. The total area of latex burst was significantly (p < 0.001) and positively correlated with holocellulose content and maximum load, respectively. Furthermore, this study also provides new insights into the mechanism of nectar secretion induced by low temperatures and its association with the chilling resistance of rubber trees. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Reinforcing nitrogen nutrition through partial substitution with organic nitrogen enhances the properties of natural rubber
Authors: Dongqi Jin; Zhengzao Cha; Jianhong Li; Yanyan Huang; Hongzhu Yang; Hailin Liu; Wei Luo; Qinghuo Lin
Affiliation: Rubber Research Institute, Chinese Academy of Tropical Agriculture Sciences
Abstract: The partial substitution of chemical fertilizer with organic fertilizer is a crucial practice for enhancing crop production and quality, although its impact on natural rubber has rarely been explored. In this study, a two-year field experiment was conducted to investigate the impact of different nitrogen application rates and varying proportions of organic nitrogen substitution on dry rubber yield, nitrogen nutrition, and natural rubber properties. The results demonstrated that the 50% organic nitrogen substitution treatment resulted in the highest dry rubber yield across all sampling periods, ranging from 46.43 to 94.65 g·tree−1. Additionally, this treatment exhibited superior soil total nitrogen (1067.69 mg·kg−1), available nitrogen (84.06 mg·kg−1), and nitrogen content in roots (1.08%), leaves (3.25%), fresh rubber latex (0.27%), and raw natural rubber (0.44%) compared with other treatments. In terms of the physical properties of natural rubber, the 50% organic nitrogen substitution treatment resulted in advantages in the weight-average molecular weight (1.57 × 106 g·mol−1), number-average molecular weight (0.36 × 106 g·mol−1), plasticity retention index (97.35%), Wallace plasticity (40.25), and Mooney viscosity (81.40). For mechanical properties, natural rubber from the substitution treatment exhibited higher tensile strength (19.84 MPa), greater elongation at break (834.75%), and increased tear strength (31.07 N·mm−1). Overall, the 50% organic nitrogen substitution treatment enhanced nitrogen nutrition in rubber trees by introducing organic nitrogen input, resulting in notable improvements in the properties of natural rubber. Therefore, substituting 50% of chemical fertilizer with organic fertilizer is proven to be an effective strategy for improving both the yield and properties of natural rubber.

Back to TopTop