Both Biotic and Abiotic Factors Shape the Spatial Distribution of Aboveground Biomass in a Tropical Karst Seasonal Rainforest in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Establishment of Forest Plots and Tree Inventory
2.3. Variables and Statistical Analysis Methods
2.3.1. Calculation of Aboveground Biomass
2.3.2. The Classification of Diameter Classes and Habitat Types
2.3.3. Biotic Factors
2.3.4. Abiotic Factors
2.3.5. Statistical Analysis
3. Results
3.1. Distribution of Aboveground Biomass
3.2. Distribution of Aboveground Biomass Across Different Diameter Classes and Species
3.3. The Relative Importance of Individual Ecological Factors in Influencing Aboveground Biomass
3.4. Direct and Indirect Effects of Biotic and Abiotic Factors on AGB
4. Discussion
4.1. Aboveground Biomass of Tropical Karst Forests in China
4.2. Effects of DBH Classes and Dominant Tree Species on Aboveground Biomass
4.3. Influence of Biotic Factors on the Spatial Distribution of Aboveground Biomass
4.4. Impact of Abiotic Factors on the Spatial Distribution of Aboveground Biomass
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ecological Factors | Valley | Hillside | Mountain Top |
---|---|---|---|
Elevation (m) | 198.80 ± 1.54 | 259.00 ± 1.93 | 335.83 ± 1.61 |
Slope (°) | 22.34 ± 1.10 | 42.75 ± 0.43 | 48.67 ± 1.38 |
Aspect | 0.59 ± 0.05 | 0.47 ± 0.02 | 0.53 ± 0.04 |
Convexity (°) | −2.12 ± 0.12 | −1.08 ± 0.08 | 4.16 ± 0.64 |
Total carbon (C, g/kg) | 57.39 ± 3.76 | 53.25 ± 0.63 | 64.20 ± 2.26 |
Total nitrogen (N, g/kg) | 6.48 ± 0.37 | 6.19 ± 0.07 | 6.96 ± 0.23 |
Total phosphorus (P, g/kg) | 2.46 ± 0.09 | 1.16 ± 0.02 | 0.78 ± 0.05 |
Total potassium (K, g/kg) | 9.66 ± 0.15 | 7.74 ± 0.07 | 6.37 ± 0.14 |
Calcium (Ca, g/kg) | 9.73 ± 1.43 | 8.17 ± 0.24 | 8.75 ± 0.56 |
Magnesium (Mg, g/kg) | 8.02 ± 0.34 | 7.75 ± 0.09 | 6.88 ± 0.21 |
pH | 7.10 ± 0.04 | 7.11 ± 0.02 | 7.07 ± 0.05 |
Soil organic carbon content (SOC, g/kg) | 91.34 ± 5.81 | 87.13 ± 1.01 | 104.65 ± 3.47 |
Soil water content (SWC, g/g) | 51.15 ± 1.73 | 34.19 ± 0.45 | 30.21 ± 0.67 |
References
- Gatti, R.C.; Castaldi, S.; Lindsell, J.A.; Coomes, D.A.; Marchetti, M.; Maesano, M.; Di Paola, A.; Paparella, F.; Valentini, R. The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecol. Res. 2015, 30, 119–132. [Google Scholar] [CrossRef]
- Phillips, O.L.; Malhi, Y.; Higuchi, N.; Laurance, W.F.; Núnez, P.V.; Vásquez, R.M.; Laurance, S.G.; Ferreira, L.V.; Stern, M.; Brown, S.; et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 1998, 282, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Wasof, S.; Lenoir, J.; Hattab, T.; Jamoneau, A.; Gallet-Moron, E.; Ampoorter, E.; Saguez, R.; Bennsadek, L.; Bertrand, R.; Valdès, A.; et al. Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey. J. Veg. Sci. 2018, 29, 521–531. [Google Scholar] [CrossRef]
- Marshall, A.R.; Willcock, S.; Platts, P.J.; Lovett, J.C.; Balmford, A.; Burgess, N.D.; Latham, J.E.; Munishi, P.K.; Salter, R.; Shirima, D.D.; et al. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biol. Conserv. 2012, 154, 20–33. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, F.; Song, T.; Wang, K.; Du, H. Stand structure and abiotic factors modulate karst forest biomass in Southwest China. Forests 2020, 11, 443. [Google Scholar] [CrossRef]
- Hardiman, B.S.; Bohrer, G.; Gough, C.M.; Vogel, C.S.; Curtis, P.S. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 2011, 92, 1818–1827. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Zhang, G.; Li, M. Long-term changes of forest biomass and its driving factors in karst area, Guizhou, China. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211039137. [Google Scholar] [CrossRef]
- de Castilho, C.V.; Magnusson, W.E.; de Araújo, R.N.O.; Luizao, R.C.; Luizao, F.J.; Lima, A.P.; Higuchi, N. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 2006, 234, 85–96. [Google Scholar] [CrossRef]
- McEwan, R.W.; Lin, Y.C.; Sun, I.F.; Hsieh, C.F.; Su, S.H.; Chang, L.W.; Song, G.Z.M.; Wang, H.H.; Hwong, J.L.; Lin, K.C.; et al. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecol. Manag. 2011, 262, 1817–1825. [Google Scholar] [CrossRef]
- Batool, F.; Bahadur, S.; Long, W. Soil nutrients determine leaf traits and above-ground biomass in the tropical cloud forest of Hainan Island. Front. For. Glob. Chang. 2024, 7, 1342135. [Google Scholar] [CrossRef]
- Douxchamps, S.; Frossard, E.; Uehlinger, N.; Rao, I.; Van Der Hoek, R.; Mena, M.; Schmidt, A.; Oberson, A. Identifying factors limiting legume biomass production in a heterogeneous on-farm environment. J. Agric. Sci. 2012, 150, 675–690. [Google Scholar] [CrossRef]
- Wang, W.F.; Lei, X.D.; Ma, Z.H.; Kneeshaw, D.D.; Peng, C.H. Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. For. Sci. 2011, 57, 506–515. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Dănilă, I.; Duduman, G.; Valladares, F.; Coomes, D.A. Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. J. Ecol. 2014, 102, 1202–1213. [Google Scholar] [CrossRef]
- Sandoya, V.; Saura-Mas, S.; Granzow-de la Cerda, I.; Arellano, G.; Macía, M.J.; Tello, J.S.; Lloret, F. Contribution of species abundance and frequency to aboveground forest biomass along an Andean elevation gradient. Forest Ecol. Manag. 2021, 479, 118549. [Google Scholar] [CrossRef]
- Brokaw, N.; Busing, R.T. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 2000, 15, 183–188. [Google Scholar] [CrossRef]
- Yan, Y.; Jarvie, S.; Zhang, Q. Habitat loss weakens the positive relationship between grassland plant richness and above-ground biomass. eLife 2024, 12, RP91193. [Google Scholar] [CrossRef]
- Nakamura, R.; Kachi, N.; Suzuki, J.I. Effects of nutrient distribution pattern and aboveground competition on size of individuals in Ipomoea tricolor populations. Botany 2008, 86, 1260–1265. [Google Scholar] [CrossRef]
- Cavieres, L.A.; Badano, E.I. Do facilitative interactions increase species richness at the entire community level? J. Ecol. 2009, 97, 1181–1191. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.; Ge, Q.; Xi, W.; Wang, X.F. Modelling the integrated effects of land use and climate change scenarios on forest ecosystem aboveground biomass, a case study in Taihe County of China. J. Geogr. Sci. 2017, 27, 205–222. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Yuan, D.X. Global view on Karst rock desertification and integrating control measures and experiences of China. Pratacult. Sci. 2008, 25, 19–25. [Google Scholar]
- Sainge, M.N.; Nchu, F.; Peterson, A.T. Diversity, above-ground biomass, and vegetation patterns in a tropical dry forest in Kimbi-Fungom National Park, Cameroon. Heliyon 2020, 6, e03299. [Google Scholar] [CrossRef] [PubMed]
- Bordin, K.M.; Esquivel-Muelbert, A.; Bergamin, R.S.; Klipel, J.; Picolotto, R.C.; Frangipani, M.A.; Zanini, K.J.; Cianciaruso, M.V.; Jarenkow, J.A.; Jurinitz, C.F.; et al. Climate and large-sized trees, but not diversity, drive above-ground biomass in subtropical forests. Forest Ecol. Manag. 2021, 490, 119126. [Google Scholar] [CrossRef]
- Li, C.; Xiong, K.N.; Wu, G.M.; Li, X.N. Response of Plant Diversity to the Rehabilitation for Rocky Desertification in Karst Mountainous Areas: A Case Study of the Dingtan Catchment of Huajiang Demonstration Area in Guizhou. Trop. Geogr. 2012, 32, 487–492. [Google Scholar]
- Poorter, L.; Markesteijn, L. Seedling Traits Determine Drought Tolerance of Tropical Tree Species. Biotropica 2008, 40, 321–331. [Google Scholar] [CrossRef]
- Su, Z.M.; Zhao, T.L.; Huang, Q.C. The vegetation of Longgang Natural Reserve in Guangxi. Guihaia 1988, S1, 188–214. [Google Scholar]
- Li, X.K.; Su, Z.M.; Lü, S.H.; Ou, Z.L.; Xiang, W.S.; Lu, S.H. The spatial pattern of natural vegetation in the karst regions of Guangxi and the ecological signality for ecosystem rehabilitation and reconstruction. J. Mt. Sci. 2003, 21, 129–139. [Google Scholar]
- Wang, B.; Huang, Y.S.; Li, X.K.; Xiang, W.S.; Ding, T.; Huang, F.Z.; Lu, S.H.; Han, W.; Wen, S.; He, L.J. Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. Biodivers. Sci. 2014, 22, 141–156. [Google Scholar]
- Guo, Y.; Wang, B.; Mallik, A.U.; Huang, F.; Xiang, W.; Ding, T.; Wen, S.; Lu, S.; Li, D.; He, Y.; et al. Topographic species–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. J. Plant Ecol. 2017, 10, 450–460. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Huang, F.; Wang, B.; Ding, T.; Xiang, W.; Li, X.; Zhou, A. Numerical classification of associations in a northern tropical karst seasonal rain forest and the relationships of these associations with environmental factors. Biodivers. Sci. 2014, 22, 157–166. [Google Scholar]
- Young, L.J.; Young, J. Statistical Ecology; Springer Science and Business Media: New York, NY, USA, 2013. [Google Scholar]
- Lexerød, N.L.; Eid, T. An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecol. Manag. 2006, 222, 17–28. [Google Scholar] [CrossRef]
- Schnabel, F.; Schwarz, J.A.; Dănescu, A.; Fichtner, A.; Nock, C.A.; Bauhus, J.; Potvin, C. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Chang. Biol. 2019, 25, 4257–4272. [Google Scholar] [CrossRef]
- Hegyi, F.; Fries, J. Growth Models for Tree and Stand Simulation; Sweden Royal College of Forest: Stockholm, Sweden, 1974; Issue 30; pp. 74–87. [Google Scholar]
- Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J. Ecol. 2001, 89, 947–959. [Google Scholar] [CrossRef]
- Valencia, R.; Foster, R.B.; Villa, G.; Condit, R.; Svenning, J.C.; Hernández, C.; Romoleroux, K.; Losos, E.; Magård, E.; Balslev, H. Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. J. Ecol. 2004, 92, 214–229. [Google Scholar] [CrossRef]
- Tian, Z.; Zhuang, L.; Li, J.; Cheng, M. Interspecific and environmental relationships of woody plant species in wild fruit-tree forests on the north slope of Ili Valley. Biodivers. Sci. 2011, 19, 335. [Google Scholar]
- Sun, X.; Zhang, Y.; Qin, Q.; Bai, Y.; Liu, Y. Bark characteristics of Betula platyphylla at different heights and their environmental interpretation under fire disturbance. Chin. J. Appl. Ecol. 2023, 34, 315–323. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Li, Z.C.; Luo, W.; Chen, Y.F.; Hong, X.J.; Han, W.T.; Li, X.C. The relationships between microhabitat heterogeneity and the spatial distribution of Dacrydium pectinatum in Bawangling, Hainan Island. Acta Ecol. Sin. 2015, 35, 2545–2554. [Google Scholar]
- Liu, Y.; Yu, X.; Yu, Y.; Hu, W.H.; Lai, J.S. Application of “rdacca. Hp” R package in ecological data analysis: Case and progress. Chin. J. Plant Ecol. 2023, 47, 134. [Google Scholar] [CrossRef]
- Ju, T.; Liu, B.; Yue, Y.; Du, H.; Li, Q.; Wang, X.; Wang, K. Estimation of forest above-ground biomass in Guangxi, China, by integrating forest age and stack learning. Land. Degrad. Dev. 2023, 34, 4079–4093. [Google Scholar] [CrossRef]
- Chave, J.; Olivier, J.; Bongers, F.; Châtelet, P.; Forget, P.M.; van Der Meer, P.; Norden, N.; Riéra, B.; Charles-Dominique, P. Above-ground biomass and productivity in a rain forest of eastern South America. J. Trop. Ecol. 2008, 24, 355–366. [Google Scholar] [CrossRef]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef]
- Xiang, W.; Li, D.; Wang, B.; Li, X.; Guo, Y.; Wen, S.; Lu, S. Characteristics and spatial distribution of forest gap in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, South China. Guihaia 2019, 39, 87–97. [Google Scholar]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Slik, J.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Carson, W.P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 2001, 82, 913–919. [Google Scholar] [CrossRef]
- van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 2019, 94, 1220–1245. [Google Scholar] [CrossRef]
- HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M.; Mayfield, M.M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 227–248. [Google Scholar] [CrossRef]
- Xu, Y.; Franklin, S.B.; Wang, Q.; Shi, Z.; Luo, Y.; Lu, Z.; Zhang, J.; Qiao, X.; Jiang, M. Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest. For. Ecol. Manag. 2015, 357, 95–103. [Google Scholar] [CrossRef]
- Satdichanh, M.; Ma, H.; Yan, K.; Dossa, G.G.; Winowiecki, L.; Vågen, T.G.; Gassner, A.; Xu, J.; Harrison, R.D. Phylogenetic diversity correlated with above-ground biomass production during forest succession: Evidence from tropical forests in Southeast Asia. J. Ecol. 2019, 107, 1419–1432. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A.; Veneklaas, E.J. Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 1998, 79, 3–9. [Google Scholar] [CrossRef]
- Raich, J.W.; Russell, A.E.; Kitayama, K.; Parton, W.J.; Vitousek, P.M. Temperature influences carbon accumulation in moist tropical forests. Ecology 2006, 87, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Bátori, Z.; Vojtkó, A.; Maák, I.E.; Lőrinczi, G.; Farkas, T.; Kántor, N.; Tanács, E.; Kiss, P.J.; Juhász, O.; Módra, G.; et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 2019, 9, 7176. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Valencia, R.; Ackerly, D.D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 2008, 322, 580–582. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Jiang, B.; Zhu, Y.; Niu, X.; Li, C.; Wu, Z.; Chen, W. Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland. Water 2022, 14, 3547. [Google Scholar] [CrossRef]
Habitat Type | Dominant Tree Species | Habitat Conditions |
---|---|---|
Valley | Saraca dive, Sterculia monosperma, Ficus hispida, Albizia odoratissima, Erythrina stricta | The humidity in both the soil and air is relatively high, with some areas experiencing seasonal waterlogging. |
Hillside | Vitex kwangsiensis, Excentrodendron tonkinense, Cephalomappa sinensis, Diplodiscus trichosperma, Cleistanthus sumatranus, Sterculia monosperma | Most regions have moderately dry soil moisture and relatively steep slopes. |
Mountain top | Boniodendron minius, Memecylon scutellatum, Sinosideroxylon pedunculatum var. Pubifolium, Pistacia weinmanniifolia | These areas are subjected to the longest duration of direct sunlight, maximum exposure of bare rocks, dry air temperatures, and severe soil moisture deficits. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Wang, B.; Li, J.; Li, D.; Liu, S.; Guo, Y.; Huang, F.; Xiang, W.; Li, X. Both Biotic and Abiotic Factors Shape the Spatial Distribution of Aboveground Biomass in a Tropical Karst Seasonal Rainforest in South China. Forests 2024, 15, 1904. https://doi.org/10.3390/f15111904
Lu F, Wang B, Li J, Li D, Liu S, Guo Y, Huang F, Xiang W, Li X. Both Biotic and Abiotic Factors Shape the Spatial Distribution of Aboveground Biomass in a Tropical Karst Seasonal Rainforest in South China. Forests. 2024; 15(11):1904. https://doi.org/10.3390/f15111904
Chicago/Turabian StyleLu, Fang, Bin Wang, Jianxing Li, Dongxing Li, Shengyuan Liu, Yili Guo, Fuzhao Huang, Wusheng Xiang, and Xiankun Li. 2024. "Both Biotic and Abiotic Factors Shape the Spatial Distribution of Aboveground Biomass in a Tropical Karst Seasonal Rainforest in South China" Forests 15, no. 11: 1904. https://doi.org/10.3390/f15111904
APA StyleLu, F., Wang, B., Li, J., Li, D., Liu, S., Guo, Y., Huang, F., Xiang, W., & Li, X. (2024). Both Biotic and Abiotic Factors Shape the Spatial Distribution of Aboveground Biomass in a Tropical Karst Seasonal Rainforest in South China. Forests, 15(11), 1904. https://doi.org/10.3390/f15111904