Biomass Production and Nutritional Sustainability in Different Species of African Mahogany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
Stand Characterization
2.2. Soils
2.2.1. Collecting and Analyzing Samples
2.2.2. Bulk Density (BD) and Nutrient Stock
- MS = macronutrient stock in the soil, in Mg ha−1;
- T = macronutrients’ concentration, in g kg−1;
- BD = soil bulk density, determined as the average of three replications, in g cm−3;
- = soil layer thickness, in cm.
2.3. Accumulated Litter
2.3.1. Litter Collection and Processing
2.3.2. Nutrient Concentration and Stock
- : stock of nutrients in litter (g ha−1);
- : nutrient concentrations in litter (g kg−1);
- : dry mass of accumulated litter (kg ha−1).
2.4. Biomass
2.4.1. Dendrometric Characteristics
2.4.2. Biomass Quantification
- : total dry biomass of a given compartment (kg);
- : fresh weight of a given compartment (kg);
- : dry weight of the samples (kg);
- : fresh weight of the samples (kg).
2.4.3. Nutrient Concentration and Stocks by Compartments and Harvest Scenarios
2.4.4. Nutrient Use Efficiency (NUE) and Potential Number of Harvests (NC)
- : nutrient use efficiency (kg);
- : sum of the dry biomass fractions used in each harvesting system (kg ha−1);
- : sum of the nutrient stock exported in each harvesting scenario (kg ha−1).
2.5. Statistical Analysis
3. Results
3.1. Dendrometric and Volume Characteristics
3.2. Aboveground Biomass
3.3. Nutrient Concentration
3.4. Nutrient Stocks
3.5. Nutritional Sustainability
4. Discussion
4.1. Dendrometric Characteristics and Volume
4.2. Aboveground Biomass
4.3. Nutrient Concentration
4.4. Nutrient Stocks
4.5. Nutritional Sustainability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, A.S.; Rajão, R.G.; Soares Filho, B.S.; Oliveira, U.; Santos, L.R.S.; Assunção, A.C.; Hoff, R.V.D.; Rodrigues, H.O.; Ribeiro, S.M.C.; Merry, F.; et al. Economic losses to sustainable timber production by fire in the Brazilian Amazon. Geogr. J. 2018, 185, 1–13. [Google Scholar] [CrossRef]
- Zeppetello, L.R.V.; Parsons, L.A.; Spector, J.T.; Naylor, R.L.; Battisti, D.S.; Masuda, Y.J.; Wolff, N.H. Large scale tropical deforestation drives extreme warming. Environ. Res. Lett. 2020, 15, 084012. [Google Scholar] [CrossRef]
- Reydon, B.P.; Fernandfes, V.B.; Telles, T.S. Land governance as a precondition for decreasing deforestation in the Brazilian Amazon. Land Use Policy 2020, 94, 104313. [Google Scholar] [CrossRef]
- MapBiomas. Rad—Relatório Annual do Desmatamento no Brasil; MapBiomas: Piracicaba, Piracicaba, Brazil, 2023. [Google Scholar]
- Mishra, A.; Humpenoder, F.; Churkina, G.; Reyer, C.P.O.; Beier, F.; Bodirsky, B.L.; Schellnhuber, H.J.; Lotze-Campen, H.; Popp, A. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 2022, 13, 4889. [Google Scholar] [CrossRef] [PubMed]
- Ibá—Indústria Brasileira de Árvores. Relatório Anual; Ibá—Indústria Brasileira de Árvores: Brasília, Brazil; São Paulo, Brazil, 2024. [Google Scholar]
- Melotto, A.M.; Laura, V.A.; Bungenstab, D.J.; Ferreira, A.D. Espécies florestais em sistemas de produção em integração. In ILPF: Inovação com Integração de Lavoura, Pecuária e Floresta; Brazilian Agricultural Research Corporation (Embrapa): Brasília, Brazil, 2019; pp. 1–26. [Google Scholar]
- Rezende, M.L.; Silva, B.B.; Lopes, M.M.; Salgado, E.G.; Santos, B.R. Análise de risco e viabilidade econômica do plantio de mogno africano no sul de Minas Gerais. Custos Gronegócio Line 2018, 14, 314–331. [Google Scholar]
- Pierozan Junior, C.; Alonso, M.P.; Cortese, D.; Piorezan, C.R.; Walter, J.B.; Cortese, D. Viabilidade econômica da produção de Khaya ivorensis em pequena propriedade no Paraná. Pesqui. Florest. Bras. 2018, 38, 1–9. [Google Scholar] [CrossRef]
- Ribeiro, A.; Silva, C.S.J.; Ferraz Filho, A.C.; Scolforo, J.R.S. Financial and risk analysis of African Mahogany plantations in Brazil. Ciênc. Agrotecnol. 2018, 42, 148–158. [Google Scholar] [CrossRef]
- Mukaila, Y.O.; Ajao, A.A.; Moteetee, A.N. Khaya grandifoliola C. DC. (Meliaceae: Sapindales): Ethnobotany, phytochemistry, pharmacological properties, and toxicology. J. Ethnopharmacol. 2021, 278, 114253. [Google Scholar] [CrossRef]
- Ferraz Filho, A.C.; Ribeiro, A.; Bouka, G.U.D.; Frank Junior, M.; Terra, G. African mahogany plantation highlights in Brazil. Floresta Ambient. 2021, 28, e20200081. [Google Scholar] [CrossRef]
- Legout, A.; Hansson, K.; Heijden, G.; Laclau, J.; Mareschal, L.; Nys, C.; Nicolas, M.; Saint-André, L.; Ranger, J. Chemical fertility of forest ecosystems. Part 2: Towards redefining the concept by untangling the role of the different components of biogeochemical cycling. For. Ecol. Manag. 2020, 461, 117844. [Google Scholar] [CrossRef]
- Kosiorek, M.; Modrzewska, B.; Wyszkowski, M. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environ. Monit. Assess. 2016, 188, 598. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.L.; Couto, L.; Pinheiro, D.T.; Brunetta, J.M.F.C. Ecologia, Silvicultura e Tecnologia de Utilizações dos Mognos-Africanos (Khaya ssp.); Sociedade Brasileira de Agrossilvicultura: Viçosa, Brazil, 2011. [Google Scholar]
- Danquad, J.A.; Appiah, M.; Osman, A.; Pappinen, A. Geographic distribution of global economic important Mahogany complex: A review. Annu. Res. Rev. Biol. 2019, 34, 1–22. [Google Scholar]
- Marques, A.C.R.; de Oliveira, L.B.; Brunetto, G.; da Silva Tavares, M.; de Quadros, F.L.F.; Nicoloso, F.T. Interaction between growth strategies and phosphorus use efficiency in grasses from South America natural grasslands. Rev. Ceres 2020, 67, 62–69. [Google Scholar] [CrossRef]
- Koç, I.; Nzokou, P.; Cregg, B. Biomass allocation and nutrient use efficiency in response to water stress: Insight from experimental manipulation of balsam fir, concolor fir and white pine transplants. New For. 2022, 53, 915–933. [Google Scholar] [CrossRef]
- Dick, G.; Schumacher, M.V. Sustentabilidade nutricional em povoamento de Eucalyptus dunnii Maiden no bioma pampa, RS. Sci. For. 2020, 48, e3277. [Google Scholar] [CrossRef]
- Schumacher, M.V.; Wistshoreck, R.; Calil, F.N.; Lopes, V.G. Manejo da biomassa e sustentabilidade nutricional em povoamentos de Eucalyptus spp. em pequenas propriedades rurais. Ciênc. Florest. 2019, 29, 144–156. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrilo, R.M.; Carrasco-Letelier, L.; Casnati, C.R.; Bentacor, L. Evaluation of the nutrient content in biomass of Eucalyptus species from short rotation plantations in Uruguay. Biomass Bioenergy 2020, 134, 105502. [Google Scholar] [CrossRef]
- Kulmann, M.S.S.; Eufrades-Junior, H.J.; Dick, G.; Schumacher, M.V.; Azevedo, G.B.; Azevedo, G.T.O.S.; Guerra, S.P.S. Belowground biomass harvest influences biomass production, stock, export and nutrient use efficiency of second rotation Eucalyptus plantations. Biomass Bioenergy 2022, 161, 106476. [Google Scholar] [CrossRef]
- Vos, M.A.E.; Ouden, J.; Hoosbeek, M.; Valtera, M.; Vries, W.; Sterck, F. The sustainability of timber and biomass harvest in perspective of forest nutrient uptake and nutrient stocks. For. Ecol. Manag. 2023, 530, 120791. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.Y.H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Chang. Biol. 2019, 25, 1482–1492. [Google Scholar] [CrossRef]
- Morais Júnior, V.T.M.; Jacovine, L.A.G.; Alves, E.B.B.M.; Torres, C.M.M.E.; Faustino, I.S.; França, L.C.J.; Rocha, S.J.S.S.; Simiqueli, G.F.; Silva, L.B.; Cruz, R.A. Growth and survival of potential tree species for carbon-offset in degraded areas from southeast Brazil. Ecol. Indic. 2020, 117, 106514. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization (FAO). World Reference Base for Soil. Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Information Reports No. 106; FAO—Food and Agriculture Organization (FAO): Rome, Italy, 2015. [Google Scholar]
- Caldeira, M.V.W.; Sperandio, H.V.; Godinho, T.O.; Klippel, V.H.; Delarmelina, W.M.; Gonçalves, E.O.; Trazzi, P.A. Serapilheira e nutrientes acumulados sobre o solo em plantios de leguminosas e em área restaurada com espécies nativas da Floresta Atlântica. Adv. For. Sci. 2020, 7, 961–971. [Google Scholar] [CrossRef]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H.; Volkweis, S.J. Análise de Solo, Plantas e Outros Materiais, 2nd ed.; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 1995. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Brazilian Agricultural Research Corporation (Embrapa): Brasília, Brazil, 2017. [Google Scholar]
- Veldkamp, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Am. J. 1994, 58, 175–180. [Google Scholar] [CrossRef]
- Machado, P.L.O.A.; Campos, A.C.; Santos, F.S. Método de Preparo de Amostras e de Determinação de Carbono em Solos Tropicais; Brazilian Agricultural Research Corporation (Embrapa): Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; de Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações; POTAFOS: Piracicaba, Brazil, 1997. [Google Scholar]
- Cuevas, E.; Medina, E. Nutrient dynamics within amazonic forest ecosystem. Oecologia 1986, 68, 466–472. [Google Scholar] [CrossRef]
- Schneider, P.R.; Schneider, P.S.P. Introdução ao Manejo Florestal, 2nd ed.; FACOS-UFSM: Santa Maria, Brazil, 2008. [Google Scholar]
- Mishra, A.K.; Singh, K.; Srivastava, S.; Alam, M.S.; Ali, S. Carbon sequestered through biomass and soil organic carbon dynamics in Jatropha curcas L. Ecol. Environ. Conserv. 2014, 20, 561–565. [Google Scholar]
- Ribeiro, S.C.; Soares, C.P.B.; Fehrmann, L.; Jacovine, L.A.G.; Gadow, K. Aboveground and belowground biomass and carbon estimates for clonal Eucalyptus trees in southeast Brazil. R. Árvore 2015, 39, 353–363. [Google Scholar] [CrossRef]
- Lafetá, B.O.; Santana, R.C.; Nogueira, G.S.; Penido, T.M.A.; Oliveira, L.F.R.; Vieira, D.S. Biomassa e coeficiente de utilização biológico de nutrientes pelo Eucalyptus grandis × E. camaldulensis em diferentes espaçamentos de plantio. Sci. For. 2021, 49, e3378. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy; Centre de Coopération Internationale en Recherche Agronomique pour le Développement: Montpellier, France, 2012. [Google Scholar]
- Gomes, G.S.L.; Caldeira, M.V.W.; Gomes, R.; Duarte, V.B.R.; Momolli, D.R.; Godinho, T.O.; Moreira, S.O.; Trazzi, P.A.; Sobrinho, L.S.; Carneiro, A.C.O.; et al. Assessing the of carbon and nitrogen storage potential in Khaya spp. Stands in Southeastern Brazil. New For. 2024, 1, 1913–1937. [Google Scholar] [CrossRef]
- Turner, J.; Lambert, M.J. Analysis of nutrient use efficiency (NUE) in Eucalyptus pilularis forests. Aust. J. Bot. 2014, 62, 558–569. [Google Scholar] [CrossRef]
- Martín-Sanz, R.C.; Pando, V.; Bueis, T.; Túrrion, M.B. Influence of soil properties on P pools and its effect on forest productivity in Mediterranean calcareous soils. Forests 2021, 12, 1398. [Google Scholar] [CrossRef]
- Silva, L.F.; Ferreira, G.L.; Santos, A.C.A.; Leite, H.G.; Silva, M.L. Equações hipsométricas, volumétricas e de crescimento para Khaya ivorensis plantada em Pirapora. Floresta Ambient. 2016, 23, 362–368. [Google Scholar] [CrossRef]
- Oliveira, X.M.; Ribeiro, A.; Ferraz Filho, A.C.; Mayrinck, R.; Lima, R.R.; Scolforo, J.R.S. Volume equations for Khaya ivorensis A. Chev. plantations in Brazil. An. Acad. Bras. Cienc. 2018, 90, 3285–3298. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.M.; Terra, G.; Chaer, G.M.; Monte, M.A. Modeling the height-diameter relationship and volume of young African mahoganies established in successional agroforestry systems in northeastern Brazil. New For. 2019, 50, 389–407. [Google Scholar] [CrossRef]
- Siqueira, E.R.; Ribeiro, F.E.; Carvalho, P.E.R.; Drumond, M.A. Comportamento inicial de espécies florestais exóticas na região da Mata Atlântica de Sergipe. Rev. Árvore 2002, 26, 13–17. [Google Scholar]
- Opuni-Frimpong, E.; Karnosky, D.F.; Storer, A.J.; Cobbinah, J.R. Silvicultural systems for plantation mahogany in Africa: Influences of canopy shade on tree growth and pest damage. For. Ecol. Manag. 2008, 255, 328–333. [Google Scholar] [CrossRef]
- Silva, D.D.F.; Leonardo, F.V.S.; Caldeira, S.F. Vulnerability of African mahogany to cattle predation in a silvipastural system. Pesqui. Agropecu. Bras. 2019, 54, e00987. [Google Scholar] [CrossRef]
- Heryati, Y.; Belawan, D.; Abdu, A.; Mahat, M.N.; Abdul-Hamid, H.; Majid, N.M. Growth performance and biomass accumulation of a Khaya ivorensis plantation in three soil series of ultisols. Am. J. Agric. Biol. Sci. 2011, 6, 33–44. [Google Scholar] [CrossRef]
- Aminah, H.; Intan, Z.B.; Rosdi, K.; Rozihawati, Z.; Ahmad Fauzi, M.S.; Hamzah, M. Growth performance of some dipterocarps and non-dipterocarps planted from rooted cuttings. In Proceedings of the 8th Round-Table Conference on Dipterocarps, Ho Chi Minh City, Vietnam, 15–17 November 2005; pp. 1–10. [Google Scholar]
- Vidaurre, G.B.; Silva, J.G.M.; Castro, M.; Coelho, J.C.F.; Brito, A.S.; Moulin, J.C. Relação da grã com algumas variáveis do crescimento e propriedades da madeira de Khaya ivorensis. Sci. For. 2017, 45, 249–259. [Google Scholar] [CrossRef]
- Santos, F.M.; Balieiro, F.C.; Ataíde, D.H.S.; Diniz, A.R.; Chaer, G.M. Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. For. Ecol. Manag. 2016, 363, 86–97. [Google Scholar] [CrossRef]
- Kateb, H.E.; Zhang, H.; Abdallah, Z. Volume, biomass, carbon sequestration and potential of desert lands’ afforestation irrigated by wastewater on examples of three species. For. Ecol. Manag. 2022, 504, 119827. [Google Scholar] [CrossRef]
- Souza, C.O.; Arantes, M.D.C.; Pinto, J.A.; Silva, J.G.M.; Carneiro, M.F.; Lima, A.C.B.; Passos, R.R. Qualidade dos resíduos madeireiros de mogno-africano e eucalipto para briquetagem. Ciênc. Florest. 2022, 32, 637–652. [Google Scholar] [CrossRef]
- Pincelli, A.L.S.; Moura, L.F.; Brito, J.O. Quantificação dos resíduos da colheita em florestas de Eucalyptus grandis e Pinus caribaea var. hondurensis. Sci. For. 2017, 45, 519–526. [Google Scholar] [CrossRef]
- Campoe, O.C.; Stape, J.L.; Laclau, J.P.; Marsden, C.; Nouvellon, Y. Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity in São Paulo State, Brazil. Tree Physiol. 2012, 32, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Schwerz, F.; Neto, D.D.; Caron, B.O.; Nardini, C.; Sgarbossa, J.; Eloy, E.; Reichardt, K. Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing. Renew. Energy 2020, 153, 1238–1250. [Google Scholar] [CrossRef]
- Schwerz, F.; Eloy, E.; Elli, E.F.; Caron, B.O. Reduced planting spacing increases radiation use efficiency and biomass for energy in black wattle plantations: Towards sustainable production systems. Biomass Bioenergy 2019, 120, 229–239. [Google Scholar] [CrossRef]
- Lamprecht, H. Silvicultura nos Trópicos: Ecossistemas Florestais e Respectivas Espécies Arbóreas—Possibilidades e Métodos de Aproveitamento Sustentado, 1st ed.; Sociedade Alemã de Cooperação Técnica: Eschborn, Germany, 1990. [Google Scholar]
- Opuni-Frimpong, E.; Tekpetey, S.L.; Owusu, S.A.; Obiri, B.D.; Appiah-Kubi, E.; Opoku, S.; Nyarko-Duah, N.Y.; Essien, C.; Opoku, E.M.; Storer, A.J. Managing Mahogany Plantations in the Tropics; CSIR-FORIG: Kumasi, Ghana, 2016. [Google Scholar]
- Albuquerque, M.P.F.; Moraes, F.K.C.; Santos, R.I.N.; Castro, G.L.S.; Ramos, E.M.L.S.; Pinheiro, H.A. Ecofisiologia de plantas jovens de mogno africano submetidas a déficit hídrico e reidratação. Pesqui. Agropecu. Bras. 2013, 48, 9–16. [Google Scholar] [CrossRef]
- Matos, F.S.; Silveira, P.S.; Barretto, V.C.M.; Freitas, I.A.S.; Araujo, M.S.; Calixto Junior, J.E.D.; Rios, J.M. Growth of Khaya senegalensis plants under water deficit. Afr. J. Agric. Res. 2016, 11, 1623–1628. [Google Scholar]
- Guimarães, C.C.; Schumacher, M.V.; Witshoreck, R.; Souza, H.P.; Santo, J.C. Biomassa e nutrientes em povoamento de Eucalyptus dunnii Maiden no Pampa gaúcho. Rev. Árvore 2015, 39, 873–882. [Google Scholar] [CrossRef]
- Vogel, H.L.M.; Schumacher, M.V.; Truby, P. Biomassa e macronutrientes de uma floresta estacional decidual em Itaara-RS, Brasil. Rev. Árvore 2013, 37, 99–105. [Google Scholar]
- Levan, C.; Buimanh, H.; Tope, B.O.O.; Xu, X.; Nguyenminh, T.; Lak, C.; Buivan, T. Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam. For. Syst. 2020, 29, 65–80. [Google Scholar] [CrossRef]
- Ribeiro, A.; Ferraz Filho, A.C.; Scolforo, J.R.S. O cultivo do mogno africano (Khaya spp.) e o crescimento da atividade no Brasil. Floresta E Ambient. 2017, 24, e00076814. [Google Scholar] [CrossRef]
- Zhang, H.; Song, T.; Wang, K.; Yang, H.; Yue, Y.; Zeng, Z.; Zeng, F. Influences of stand characteristics and environmental factors on forest biomass and root–shoot allocation in southwest China. Ecol. Eng. 2016, 91, 7–15. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, H.; Shi, Z.; Yang, X. Biomass accumulation and carbon sequestration in an age-sequence of Mongolian pine plantations in Horqin sandy land, China. Forests 2019, 10, 197. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017. [Google Scholar]
- Tang, R.J.; Luan, S. Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Curr. Opin. Plant Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef]
- González-García, M.; Hevia, A.; Majada, J.; Rubiera, F.; Barrio-Anta, M. Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. Ifor. Biogeosci. For. 2015, 9, 303–310. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrilo, R.M.; Carrasco-Letelier, L.; Casnati, C.R. Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For. Ecol. Manag. 2019, 438, 63–74. [Google Scholar] [CrossRef]
- Praciak, A.; Pasiecznik, N.; Sheil, D.; Van Heist, M.; Sassen, M.; Correia, C.S.; Dixon, C.; Fyson, G.; Rushford, K.; Eeling, C. The CABI Encyclopedia of Forest Trees; CABI: Oxfordshire, UK, 2013. [Google Scholar]
- Furtado, E.L.; Benso, L.A. Doenças. In Mogno Africano (Khaya spp.); Atualidades e Perspectivas do Cultivo No Brasil; Reis, C.A.F., Oliveira, E.B., Santos, A.M., Eds.; Brazilian Agricultural Research Corporation (Embrapa): Brasília, Brazil, 2019; pp. 235–250. [Google Scholar]
- Gatto, A.; Bussinguer, A.P.; Ribeiro, F.C.; Azevedo, G.B.; Bueno, M.C.; Monteiro, M.M.; Souza, P.F. Ciclagem e balanço de nutrientes no sistema solo-planta em um plantio de Eucalyptus sp. no Distrito Federal. R. Bras. Ciênc. Solo 2014, 38, 879–887. [Google Scholar] [CrossRef]
- Reis, C.A.; Kalil Filho, N.A.; Aguiar, A.V.; Moraes-Rangel, A.C. Caracterização de espécies pertencentes ao gênero Khaya de interesse no Brasil. In Mogno Africano (Khaya spp.); Atualidades e Perspectivas do Cultivo no Brasil; Reis, C.A.F., Oliveira, E.B., Santos, A.M., Eds.; Brazilian Agricultural Research Corporation (Embrapa): Brasília, Brazil, 2019; pp. 12–49. [Google Scholar]
- Viera, M.; Schumacher, M.V.; Truby, P.; Araújo, E.F. Implicações nutricionais com base em diferentes intensidades de colheita da biomassa de Eucalyptus urophylla × Eucalyptus globulus. Ciênc. Rural 2015, 45, 432–439. [Google Scholar] [CrossRef]
- Ludvichak, A.A.; Schumacher, M.V.; Viera, M.; Santos, K.F.; Momolli, D.R. Growth, biomass and nutrient stock in mixed species planting of hybrid Eucalyptus urograndis and Acacia mearnsii in Southern Brazil. New For. 2022, 53, 203–219. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Behling, A.; Corte, A.P.D.; Simon, A.; Pscheidt, H.; Ruza, M.S.; Mochiutti, S. Estoques de biomassa e carbono em povoamentos de acácia negra em diferentes idades no Rio Grande do Sul. Sci. For. 2014, 42, 361–370. [Google Scholar]
- Alves, A.R.; Ferreira, R.L.C.; Silva, J.A.A.; Dubeux Júnior, J.C.B.; Osajima, J.A.; Holanda, A.C. Conteúdo de nutrientes na biomassa e eficiência nutricional em espécies da Caatinga. Ciênc. Florest. 2017, 27, 377–390. [Google Scholar] [CrossRef]
- Viera, M.; Schumacher, M.V.; Bonacina, D.M.; Ramos, L.O.O.; Rodríguez-Soalleiro, R. Biomass and nutrient allocation to aboveground components in fertilized Eucalyptus saligna and E. urograndis plantations. New For. 2017, 48, 445–462. [Google Scholar] [CrossRef]
- Dick, G.; Schumacher, M.V. Silvicultura de Acacia mearnsii no sul do Brasil: Biomassa e nutrientes. Biofix Sci. J. 2019, 4, 97–103. [Google Scholar] [CrossRef]
- Rocha, J.H.T.; du Toit, B.; Gonçalves, J.L.M. Ca and Mg nutrition and its application in Eucalyptus and Pinus plantations. For. Ecol. Manag. 2019, 442, 63–78. [Google Scholar] [CrossRef]
- Hernández, J.; Del Pino, A.; Hitta, M.; Lorenzo, M. Management of forest harvest residues affects soil nutrient availability during reforestation of Eucalyptus grandis. Nutr. Cycl. Agroecosyst. 2016, 105, 141–155. [Google Scholar] [CrossRef]
- Ky-Dembele, C.; Bayala, J.; Savadogo, P.; Tigabu, M.; Odén, P.C.; Boussim, I.J. Comparison of growth responses of Khaya senegalensis seedlings and stecklings to four irrigation regimes. Silva Fenn. 2010, 44, 787–798. [Google Scholar] [CrossRef]
- Souza, A.L.; Smiderle, O.J.; Chagas, E.A.; Alves, M.S.; Fagundes, P.R.O. Growth, nutrition and efficiency in the transport, uptake and use of nutrients in African mahogany. Rev. Ciênc. Agron. 2020, 51, e20196711. [Google Scholar] [CrossRef]
- Medeiros, P.L.; Silva, G.G.C.; Oliveira, E.M.M.; Ribeiro, C.O.; Silva, C.O.; Pimenta, A.S. Efficiency of nutrient use for biomass production of a Eucalyptus clone as a function of planting density in short-rotation cropping. Aust. For. 2020, 83, 66–74. [Google Scholar] [CrossRef]
- Kulmann, M.S.S.; Eufrade-Junior, H.J.; Dick, G.; Schumacher, M.V.; Azevedo, G.B.; Azevedo, G.T.O.S.; Guerra, S.P.S. Different harvest systems of Eucalyptus clone plantations affect above and belowground biomass production and nutritional sustainability. New For. 2023, 54, 543–563. [Google Scholar] [CrossRef]
- Rosim, C.C.; Hsing, T.Y.; Paula, R.C. Nutrient use efficiency in interspecific hybrids of eucalypt. Rev. Ciênc. Agron. 2016, 47, 540–547. [Google Scholar] [CrossRef]
- Bonner, M.T.L.; Herbohn, J.; Gregorio, N.; Pasa, A.; Avela, M.S.; Solano, C.; Moreno, M.O.M.; Almendras-Ferraren, A.; Wills, J.; Shoo, L.P.; et al. Soil organic carbon recovery in tropical tree plantations may depend on restoration of soil microbial composition and function. Geoderma 2019, 353, 70–80. [Google Scholar] [CrossRef]
- Paes, F.A.S.V.; Lima, A.M.N.; Hakamada, R.E.; de Barros, N.F. Effect of harvest residues management, soil tillage and fertilization on Eucalyptus productivity. R. Bras. Ciênc. Solo 2013, 37, 1081–1090. [Google Scholar] [CrossRef]
- Rocha, J.H.T.; de Gonçalves, J.L.M.; Gava, J.L.; Godinho, T.G.; Melo, E.A.S.C.; Bazani, J.H.; Hubner, A.; Arthur Junior, J.C.; Wichert, M.P. Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations. For. Ecol. Manag. 2016, 379, 1–10. [Google Scholar] [CrossRef]
- Vangansbeke, P.; Schrijver, A.; Frenne, P.; Verstraeten, A.; Gorissen, L.; Verhenyen, K. Strong negative impacts of whole tree harvesting in pine stands on poor, sandy soils: A long-term nutrient budget modelling approach. For. Ecol. Manag. 2015, 356, 101–111. [Google Scholar] [CrossRef]
- Sixel, R.M.M.; Arthur Junior, J.C.; Gonçalves, J.L.M.; Alvares, C.A.; Andrade, G.R.P.; Azevedo, A.C.; Stahl, J.; Moreira, A.M. Sustainability of wood productivity of Pinus taeda based on nutrient export and stocks in the biomass and in the soil. R. Bras. Ciênc. Solo 2015, 39, 1416–1427. [Google Scholar] [CrossRef]
- Helmisaari, H.; Hanssen, K.H.; Jacobson, S.; Kukkola, M.; Luiro, J.; Saarsalmi, A.; Tamminen, P.; Tveite, B. Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. For. Ecol. Manag. 2011, 261, 1919–1927. [Google Scholar] [CrossRef]
- Silva, J.G.M.; Vidaurre, G.B.; Arantes, M.D.C.; Batista, D.C.; Soranso, D.R.; Billo, D.F. Qualidade da madeira de mogno africano para a produção de serrados. Sci. For. 2016, 44, 181–190. [Google Scholar] [CrossRef]
- Martins, T.G.V.; Rocha, M.F.V.; Nieri, E.M.; Melo, L.A.; Silva, M.L.S.; Silva, D.S.N. Nutrient accumulation in Eucalyptus bark at different population densities. Rev. Bras. Eng. Agríc. Ambient. 2019, 23, 40–46. [Google Scholar] [CrossRef]
Species | Depth | pH | N | P | K | Ca | Mg | Al | H + Al | SB | CEC | BS | OM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | H2O | g kg−1 | -----mg dm−3----- | ------------------------------Cmolc dm−3------------------ | % | g kg−1 | |||||||
KG | 0–20 | 5.91 | 1.59 | 2.33 | 26.00 | 1.66 | 0.51 | 0.00 | 2.19 | 2.25 | 4.44 | 50.57 | 24.4 |
20–40 | 5.81 | 0.75 | 1.33 | 19.78 | 1.12 | 0.36 | 0.02 | 2.01 | 1.54 | 3.55 | 43.12 | 19.3 | |
KI | 0–20 | 5.76 | 1.87 | 2.33 | 23.67 | 1.33 | 0.43 | 0.00 | 2.22 | 1.84 | 4.06 | 45.17 | 22.4 |
20–40 | 5.74 | 0.90 | 1.33 | 16.78 | 1.02 | 0.30 | 0.01 | 1.91 | 1.37 | 3.28 | 41.44 | 16.7 | |
KS | 0–20 | 6.07 | 1.79 | 2.67 | 26.11 | 2.29 | 0.60 | 0.00 | 1.73 | 2.97 | 4.71 | 62.15 | 26.1 |
20–40 | 6.00 | 0.88 | 1.44 | 19.00 | 1.40 | 0.42 | 0.00 | 1.67 | 1.88 | 3.55 | 52.48 | 18.6 |
Kopezky–Gehrhardt | |
Hohenadl and Krenn | |
Husch | |
Brenac | |
Spurr without β0 | |
Combined models of Spurr | |
Stoate | |
Naslund | |
Meyer | |
Schumacher and Hall | |
Spurr |
Species | Equation | Syx% | |
---|---|---|---|
Stems | |||
KG | 0.968 | 9.5 | |
KI | 0.961 | 7.3 | |
KS | 0.965 | 9.9 | |
Bark | |||
KG | 0.841 | 16.8 | |
KI | 0.681 | 22.1 | |
KS | 0.774 | 14.2 | |
Leaves | |||
KG | 0.685 | 35.3 | |
KI | 0.396 | 23.2 | |
KS | 0.439 | 36.9 | |
Branches | |||
KG | 0.566 | 48.3 | |
KI | 0.311 | 25.2 | |
KS | 0.807 | 19.5 | |
Total Biomass | |||
KG | 0.814 | 24.3 | |
KI | 0.681 | 16.4 | |
KS | 0.861 | 11.3 |
Scenario | Description | Potential Use | Equation |
---|---|---|---|
C1 | Total removal of aboveground biomass | Energy use | |
C2 | Removal of stem biomass with bark and branches | Multiple use | |
C3 | Removal of biomass from the stems with bark | Non-conservation logging | |
C4 | Removal of stem biomass | Conservation timber use |
Species | Model | Equation | ||
---|---|---|---|---|
KG | Combined variable Spurr | 0.948 | 11.4 | |
KI | Meyer | 0.945 | 10.6 | |
KS | Stoate | 0.968 | 5.1 |
Species | ||||||
---|---|---|---|---|---|---|
(%) | (cm) | (m) | (m3) | (m3 ha−1) | (m³ ha−1 year−1) | |
KG | 93.33 A | 21.28 B (±4.9) | 5.68 AB (±2.6) | 0.1622 AB (±0.01) | 60.54 A (±6.2) | 6.37 A (±0.6) |
KI | 88.89 B | 22.59 A (±2.8) | 5.88 A (±1.4) | 0.2234 A (±0.01) | 79.71 A (±21.7) | 8.39 A (±2.3) |
KS | 93.33 A | 21.66 AB (±3.5) | 4.86 B (±0.9) | 0.1423 B (±0.01) | 53.12 B (±4.3) | 5.59 A (±0.5) |
Mean | 91.85 | 21.84 | 5.47 | 0.1760 | 64.46 | 6.78 |
Species | Stem | Bark | Leaves | Branches | Total |
---|---|---|---|---|---|
KG | 28.91 (±3.21) | 6.99 B (±0.47) | 4.08 B (±0.48) | 49.88 (±1.52) | 90.29 (±4.24) |
KI | 29.98 (±5.27) | 6.09 B (±1.04) | 7.58 A (±0.28) | 43.03 (±2.87) | 85.97 (±4.22) |
KS | 25.96 (±2.04) | 8.24 A (±0.84) | 2.09 C (±0.36) | 44.86 (±3.02) | 83.49 (±1.43) |
Mean | 28.28 | 7.11 | 4.58 | 45.92 | 86.58 |
Species | Nutrient Concentrations (g kg−1) | |||||
---|---|---|---|---|---|---|
N | P | K | Ca | Mg | S | |
Stems | ||||||
KG | 1.48 B (±0.04) | 0.45 (±0.12) | 0.78 AB (±0.04) | 1.44 B (±0.14) | 0.32 B (±0.02) | 0.81 (±0.52) |
KI | 1.37 B (±0.02) | 0.33 (±0.02) | 0.49 B (±0.03) | 1.64 AB (±0.30) | 0.28 B (±0.01) | 0.91 (±0.65) |
KS | 1.87 A (±0.06) | 0.33 (±0.05) | 1.09 A (±0.25) | 2.51 A (±0.54) | 0.48 A (±0.02) | 0.83 (±0.58) |
Bark | ||||||
KG | 6.26 (±0.41) | 0.47 (±0.04) | 6.18 A (±0.84) | 20.07 AB (±2.31) | 1.80 A (±0.18) | 0.77 (±0.20) |
KI | 6.84 (±0.62) | 0.42 (±0.01) | 4.74 B (±0.51) | 21.61 A (±1.62) | 1.21 B (±0.13) | 0.71 (±0.16) |
KS | 7.76 (±0.55) | 0.45 (±0.01) | 7.22 A (±0.43) | 15.78 B (±0.77) | 1.73 A (±0.17) | 0.93 (±0.11) |
Leaves | ||||||
KG | 15.49 (±0.75) | 0.85 (±0.05) | 6.72 (±0.87) | 16.66 (±3.34) | 2.63 (±0.44) | 2.00 (±0.29) |
KI | 14.60 (±0.20) | 0.75 (±0.03) | 5.73 (±0.77) | 18.73 (±0.42) | 2.29 (±0.43) | 2.13 (±0.20) |
KS | 14.49 (±1.41) | 0.81 (±0.07) | 6.20 (±0.92) | 13.81 (±1.53) | 1.89 (±0.35) | 1.55 (±0.35) |
Branches | ||||||
KG | 8.06 (±1.75) | 0.68 (±0.13) | 7.24 (±0.80) | 15.21 (±2.05) | 3.21 A (±0.63) | 1.15 (±0.32) |
KI | 5.92 (±0.35) | 0.74 (±0.07) | 6.51 (±0.09) | 15.13 (±1.45) | 1.80 B (±0.37) | 0.86 (±0.21) |
KS | 8.66 (±0.45) | 0.76 (±0.19) | 6.93 (±0.86) | 12.48 (±2.26) | 2.47 AB (±0.57) | 0.84 (±0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, G.S.L.; Caldeira, M.V.W.; Gomes, R.; Duarte, V.B.R.; Momolli, D.R.; Faria, J.C.T.; Godinho, T.d.O.; Trazzi, P.A.; Sobrinho, L.S.; Oliveira Neto, S.N.d.; et al. Biomass Production and Nutritional Sustainability in Different Species of African Mahogany. Forests 2024, 15, 1951. https://doi.org/10.3390/f15111951
Gomes GSL, Caldeira MVW, Gomes R, Duarte VBR, Momolli DR, Faria JCT, Godinho TdO, Trazzi PA, Sobrinho LS, Oliveira Neto SNd, et al. Biomass Production and Nutritional Sustainability in Different Species of African Mahogany. Forests. 2024; 15(11):1951. https://doi.org/10.3390/f15111951
Chicago/Turabian StyleGomes, Gabriel Soares Lopes, Marcos Vinicius Winckler Caldeira, Robert Gomes, Victor Braga Rodrigues Duarte, Dione Richer Momolli, Júlio Cézar Tannure Faria, Tiago de Oliveira Godinho, Paulo André Trazzi, Laio Silva Sobrinho, Silvio Nolasco de Oliveira Neto, and et al. 2024. "Biomass Production and Nutritional Sustainability in Different Species of African Mahogany" Forests 15, no. 11: 1951. https://doi.org/10.3390/f15111951
APA StyleGomes, G. S. L., Caldeira, M. V. W., Gomes, R., Duarte, V. B. R., Momolli, D. R., Faria, J. C. T., Godinho, T. d. O., Trazzi, P. A., Sobrinho, L. S., Oliveira Neto, S. N. d., & Schumacher, M. V. (2024). Biomass Production and Nutritional Sustainability in Different Species of African Mahogany. Forests, 15(11), 1951. https://doi.org/10.3390/f15111951