Seedling Recruitment at the Upper Limit of Tree Growth in the Alborz Mountains, Northern Iran: Safe Site Characteristics and Edaphic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sampling
2.3. Data Analysis
3. Results
3.1. Distribution of Seedlings Along the Elevational Gradient
3.2. Association of Seedlings with Facilitative Elements, Microhabitat Substrates, and Soil Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holtmeier, F.K.; Broll, G. Treeline advance-driving processes and adverse factors. Landsc. Online 2007, 1, 1–21. [Google Scholar] [CrossRef]
- Holtmeier, F.-K. Mountain Timberlines; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-9704-1. [Google Scholar]
- Körner, C. Alpine treelines. In Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 3rd ed.; Körner, C., Ed.; Springer: Cham, Switzerland, 2021; pp. 141–173. [Google Scholar]
- Harper, J.L. The Population Biology of Plants; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Bürzle, B.; Schickhoff, U.; Schwab, N.; Wernicke, L.N.; Müller, Y.K.; Böhner, Y.; Chaudhary, R.P.; Scholten, T.; Oldeland, J. Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecol. 2018, 219, 115–132. [Google Scholar] [CrossRef]
- Schwab, N.; Bürzle, B.; Bobrowski, M.; Böhner, J.; Chaudhary, R.P.; Scholten, T.; Weidinger, J.; Schickhoff, U. Predictors of the success of natural regeneration in a Himalayan treeline ecotone. Forests 2022, 13, 454. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, W.K.; Resor, A.C. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2022, 162, 157–168. [Google Scholar] [CrossRef]
- Smith, W.K.; Germino, M.J.; Hancock, T.E.; Johnson, D.M. Another perspective on altitudinal limits of Alpine timberlines. Tree Physiol. 2003, 23, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Lett, S.; Dorrepaal, E. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Funct. Ecol. 2018, 32, 1666–1680. [Google Scholar] [CrossRef]
- Johnson, A.C.; Yeakley, J.A. Microsites and climate zones: Seedling regeneration in the alpine treeline ecotone world-wide. Forests 2019, 10, 864. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Gerlitz, L.; Heyken, H.; Lange, J.; Müller, M.; Scholten, T.; et al. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dyn. 2015, 6, 245–265. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R.P.; Müller, M.; Scholten, T.; Schwab, N.; Weidinger, J. The treeline ecotone in Rolwaling Himal, Nepal: Pattern-process relationships and treeline shift potential. In Ecology of Himalayan Treeline Ecotone; Singh, S.P., Reshi, Z.A., Joshi, R., Eds.; Springer Nature: Singapore, 2023; pp. 95–145. [Google Scholar]
- Garrido, J.L.; Rey, P.J.; Herrera, C.M. Regional and local variation in seedling emergence, mortality and recruitment of a perennial herb in Mediterranean mountain habitats. Plant Ecol. 2007, 190, 109–121. [Google Scholar] [CrossRef]
- Callaway, R.M. Positive interactions among plants. Bot. Rev. 1995, 61, 306–349. [Google Scholar] [CrossRef]
- Zohary, M. Geobotanical Foundations of the Middle East; Gustav Fischer: Stuttgart, Germany, 1973. [Google Scholar]
- Takhtajan, A. Floristic Regions of the World; University of California Press: Berkeley, CA, USA, 1986. [Google Scholar]
- Browicz, K. Chorology of the Euxinian and Hyrcanian element in the woody flora of Asia. Plant Syst. Evol. 1989, 162, 305–314. [Google Scholar] [CrossRef]
- Naqinezhad, A.; Esmailpoor, A. Flora and vegetation of rocky outcrops/cliffs near the Hyrcanian forest timberline in the Mazandaran mountains, northern Iran. Nord. J. Bot. 2017, 35, 449–466. [Google Scholar] [CrossRef]
- Noroozi, J.; Körner, C.A. Bioclimatic characterization of high elevation habitats in the Alborz Mountains on Iran. Alp. Bot. 2018, 128, 1–11. [Google Scholar] [CrossRef]
- Klein, J.C.; Lacoste, A. The oak forests of Quercus macranthera F. et M. in the Alborz Mountains (Iran) and the adjacent mountain ranges (Greater and Lesser Caucasus). Ecol. Mediterr. 1989, 15, 65–93. [Google Scholar] [CrossRef]
- Naqinezhad, A.; De Lombaerde, E.; Gholizadeh, H.; Wasof, S.; Perring, M.P.; Meeussen, C.; De Frenne, P.; Verheyen, K. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Chang. Biol. 2021, 28, 1103–1118. [Google Scholar] [CrossRef]
- Noroozi, J.; Akhani, H.; Breckle, S.W. Biodiversity and phytogeography of the alpine flora of Iran. Biodivers. Conserv. 2008, 17, 493–521. [Google Scholar] [CrossRef]
- Röhrig, E. Deciduous forests of the Near East. In Temperate Deciduous Forests; Röhrig, E., Ulrich, B., Eds.; Ecosystems of the World 7; Elsevier: Amsterdam, The Netherlands, 1991; pp. 527–537. [Google Scholar]
- Leroy, S.A.; Arpe, K. Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J. Biogeogr. 2007, 34, 2115–2128. [Google Scholar] [CrossRef]
- Ramezani, E.; de Klerk, P.; Mrotzek, H.; Joosten, H. From the coldest ice age to green carpets of beauty: A 20,000-year vegetation history from the Hyrcanian forest refugium of northern Iran. Quat. Sci. Rev. 2023, 320, 108352. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Naqinezhad, A.; Chytrý, M. Classification of the Hyrcanian forest vegetation, Northern Iran. Appl. Veg. Sci. 2019, 23, 107–126. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; ASA and SSSA Book Ser. 5; ASA and SSSA: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- USDA. Soil Conservation Service. Soil Survey Manual, Soil Survey Division Staff; Government Printing Office: Washington, DC, USA, 1993; Volume 18. [Google Scholar]
- Allison, L.E. Organic carbon. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1975; Part 2; pp. 1367–1378. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis; Miller, R.H., Keeney, R.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; Part 2; pp. 595–624. [Google Scholar]
- Homer, D.C.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California, Division of Agricultural Sciences: Berkeley, CA, USA, 1961. [Google Scholar]
- Bower, C.A.; Reitemeier, R.F.; Fireman, M. Exchangeable cation analysis of saline and alkali soils. Soil Sci. 1952, 73, 251–262. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Zuur, A.F.; Hilbe, J.M.; Leno, E.N. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists; Highland Statistics Ltd.: Newburgh, UK, 2013. [Google Scholar]
- Dormann, C. Environmental Data Analysis. An Introduction with Examples in R; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Garnier, S.; Ross, N.; Rudis, B.; Filipovic-Pierucci, A.; Galili, T.; Timelyportfolio; O’Callaghan, A.; Greenwell, B.; Sievert, C.; Harris, D.J.; et al. Viridis, version 0.6.5. Viridis (Lite)-Colorblind-Friendly Color Maps for R. Zenodo: Genève, Switzerland, 2024. [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org (accessed on 1 August 2024).
- Gómez-Aparicio, L.; Gómez, J.M.; Zamora, R.; Boettinger, J.L. Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. J. Veg. Sci. 2005, 16, 191–198. [Google Scholar] [CrossRef]
- McIntire, E.J.B.; Piper, F.I.; Fajardo, A. Wind exposure and light exposure, more than elevation-related temperature, limit treeline seedling abundance on three continents. J. Ecol. 2016, 104, 1379–1390. [Google Scholar] [CrossRef]
- Bader, M.Y.; van Geloof, I.; Rietkerk, M. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 2007, 191, 33–45. [Google Scholar] [CrossRef]
- Finzi, C.A.; Canham, D.C. Sapling growth in response to light and nitrogen availability in a southern New England forest. For. Ecol. Manag. 2000, 131, 153–165. [Google Scholar] [CrossRef]
- Mori, A.; Takeda, H. Light-related competitive effects of overstory trees on understory conifer saplings in a subalpine forest. J. For. Res. 2003, 8, 163–168. [Google Scholar] [CrossRef]
- Gerhardt, K. Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. For. Ecol. Manag. 1996, 82, 33–48. [Google Scholar] [CrossRef]
- Rust, S.; Savill, P.S. The root systems of Fraxinus excelsior and Fagus sylvatica and their competitive relationships. Forestry 2000, 73, 499–508. [Google Scholar] [CrossRef]
- Coomes, A.D.; Grubb, J.P. Impacts of root competition in forests and woodlands: A theoretical framework and review of experiments. Ecol. Monogr. 2000, 70, 171–207. [Google Scholar] [CrossRef]
- Marzano, R.; Garbarino, M.; Marcolin, E.; Pividori, M.; Lingua, E. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy). Ecol. Eng. 2013, 51, 117–122. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Lasota, J.; Błońska, E. Interspecific variability of water storage capacity and absorbability of deadwood. Forests 2020, 11, 575. [Google Scholar] [CrossRef]
- Błońska, E.; Kempf, M.; Lasota, J. Why deadwood may be as effective as soil for the growth of a new generation of fir in mountain forests. For. Ecol. Manag. 2023, 550, 121511. [Google Scholar] [CrossRef]
- Sánchez-Gómez, D.; Valladares, F.; Zavala, M.A. Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: Trade-offs and evidence for niche differentiation. New Phytol. 2006, 170, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Portsmuth, A.; Niinemets, U. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Funct. Ecol. 2007, 21, 61–77. [Google Scholar] [CrossRef]
- Orman, O.; Adamus, M.; Szewczyk, J. Regeneration processes on coarse woody debris in mixed forests: Do tree germinants and seedlings have species-specific responses when grown on coarse woody debris? J. Ecol. 2016, 104, 1809–1818. [Google Scholar] [CrossRef]
- Takahashi, M.; Sakai, Y.; Ootomo, R.; Shiozaki, M. Establishment of tree seedlings and water-soluble nutrients in coarse woody debris in an old-growth Picea–Abies forest in Hokkaido, northern Japan. Can. J. For. Res. 2000, 30, 1148–1155. [Google Scholar] [CrossRef]
- Resler, L.M.; Butler, D.R.; Malanson, G.P. Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Phys. Geogr. 2005, 26, 112–125. [Google Scholar] [CrossRef]
- Maher, E.L.; Germino, M.J.; Hasselquist, N.J. Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine-treeline ecotone. Can. J. For. 2005, 35, 567–574. [Google Scholar] [CrossRef]
- Maher, E.L.; Germino, M.J. Microsite differentiation among conifer species during seedling establishment at alpine treeline. Écoscience 2006, 13, 334–341. [Google Scholar] [CrossRef]
- Beatty, S.W.; Sholes, O.D.V. Leaf litter effect on plant species composition of deciduous forest treefall pits. Can. J. For. Res. 1988, 18, 553–559. [Google Scholar] [CrossRef]
- Rey, B.; José, M.; Espigares, T.; Castro-Díez, P. Simulated effects of herb competition on planted Quercus faginea seedlings in Mediterranean abandoned cropland. Appl. Veg. Sci. 2003, 6, 213–222. [Google Scholar] [CrossRef]
- Facelli, J.M.; Pickett, S.T.A. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 1991, 57, 1–32. [Google Scholar] [CrossRef]
- Vazquez-Yanes, C.; Orozco-Segovia, A.; Rincón, E.; Sánchez-Coronado, M.E.; Huante, P.; Toledo, J.R.; Barradas, V.L. Light beneath the litter in a tropical forest: Effect on seed germination. Ecology 1990, 71, 1952–1958. [Google Scholar] [CrossRef]
- Schimpf, D.J.; Danz, N.P. Light passage through leaf litter: Variation among northern hardwood trees. Agric. For. Meteorol. 1999, 97, 103–111. [Google Scholar] [CrossRef]
- Kitajima, K.; Myers, J.A. Seedling ecophysiology: Strategies toward achievement of positive net carbon balance. In Seedling Ecology and Evolution; Leck, M.A., Parker, V.T., Simpson, R., Eds.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kooch, Y.; Mohmedi Kartalaei, Z.; Amiri, M.; Zarafshar, M.; Shabani, S.; Mohammady, M. Soil health reduction following the conversion of primary vegetation covers in a semi-arid environment. Sci. Total Environ. 2024, 921, 171113. [Google Scholar] [CrossRef]
- Blouin, V.M.; Schmidt, M.G.; Bulmer, C.E.; Krzic, M. Effects of compaction and water content on lodgepole pine seedling growth. For. Ecol. Manag. 2008, 255, 2444–2452. [Google Scholar] [CrossRef]
- Osman, K. Physical Properties of Forest Soils. In Forest Soils: Properties and Management; Osman, K., Ed.; Springer: Cham, Switzerland, 2013; pp. 19–44. [Google Scholar]
- Jadczyszyn, J.; Bartosiewicz, B. Processes of soil drying and degradation. Studia i Raporty IUNG-PIB 2020, 64, 49–60. (In Polish) [Google Scholar]
- Sefidi, K.; Marvie Mohadjer, M.R.; Mosandl, R.; Kopenheaver, C. Canopy gaps and regeneration in old-growth Oriental beech (Fagus orientalis Lipsky) stands, northern Iran. For. Ecol. Manage. 2011, 262, 1094–1099. [Google Scholar] [CrossRef]
- Nasiri, N.; Marvie Mohadjer, M.R.; Etemad, V.; Sefidi, K.; Mohammadi, L.; Gharehaghaji, M. Natural regeneration of oriental beech (Fagus orientalis Lipsky) trees in canopy gaps and under closed canopy in a forest in northern Iran. J. For. Res. 2018, 29, 1075–1081. [Google Scholar] [CrossRef]
- Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 1994, 9, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Mohtashamian, M.; Attar, F.; Kavousi, K.; Masoudi-Nejad, A. Biogeography, distribution and conservation status of maples (Acer L.) in Iran. Trees 2017, 31, 1583–1598. [Google Scholar] [CrossRef]
- Ebrahimi, S.S.; Pourbabaei, H.; Potheir, D.; Omidi, A.; Torkaman, J. Effect of livestock grazing and human uses on herbaceous species diversity in oriental beech (Fagus orientalis Lipsky) forests, Guilan, Masal, northern Iran. J. For. Res. 2014, 25, 455–462. [Google Scholar] [CrossRef]
Environmental Variables | Mean (Min–Max) | ||
---|---|---|---|
Zone A (n = 8) | Zone B (n = 8) | Zone C (n = 11) | |
Elevation (m a.s.l.) | 2384.6 (2286–2469) | 2497.8 (2413–2554) | 2697.4 (2574–2960) |
Slope (%) | 57.75 (45–69) | 60.13 (50–68) | 45.55 (10–71) |
Sand (%) | 58.5 (20–74) | 53 (26–76) | 59.45 (36–86) |
Silt (%) | 28.25 (16–60) | 31.25 (14–56) | 33.27 (10–50) |
Clay (%) | 13.25 (4–20) | 13.5 (6–26) | 8.55 (2–26) |
Soil type | Sandy–loam | Sandy–loam | Sandy–loam |
Bulk density (g cm−3) | 1.25 (0.84–1.55) | 1.58 (1.2–2.12) | 1.72 (1.08–3.34) |
CEC (ppm) | 29.2 (28.12–30.2 | 29.37 (27.53–30.8) | 29.52 (27.89–31.15) |
pH (1:2.5 H2O) | 6.75 (5.2–7.35) | 6.64 (5.9–7.41) | 6.95 (6.13–7.72) |
Electrical conductivity (EC) (ds m−1) | 175.25 (46.6–317) | 127.75 (58.5–253) | 146.84 (60–310) |
Organic C (%) | 2.63 (1.62–3.86) | 2.32 (1.2–2.7) | 2.36 (1.68–2.7) |
Total N (%) | 0.16 (0.13–0.21) | 0.15 (0.11–0.18) | 0.15 (0.12–0.19) |
C/N (%) | 16.74 (12.46–19.29) | 15.65 (10.91–17.73) | 16.15 (12.92–19.14) |
Available phosphorous (mg/kg) | 14.25 (11–19) | 12.5 (9–15) | 11.27 (8–18) |
Available potassium (mg/kg) | 307.16 (129–556) | 215.41 (124.25–390.5) | 274.18 (101.75–536.25) |
Available calcium (mg/kg) | 570.56 (245.2–887.7) | 412.94 (196.3–614.8) | 504.65 (242.6–694.8) |
Available magnesium (mg/kg) | 268.74 (99.52–369.52) | 204.66 (67.88–331.85) | 119.68 (49.47–210.47) |
Facilitative Element | Estimate | Std. Error | z Value | Pr (>|z|) | Chi-Square |
---|---|---|---|---|---|
Zone A | |||||
(Intercept) | 1.76 | 0.38 | 4.68 | 2.93 × 10−6 *** | |
Rocks | −1.01 | 0.13 | −7.59 | 3.26 × 10−14 *** | 59.24 *** |
Stones | −0.26 | 0.15 | −1.72 | 8.47 × 10−2 | 3.77 |
Deadwood | 1.26 | 0.13 | 9.43 | <2 × 10−16 *** | 145.78 *** |
Tree cover | −0.36 | 0.26 | −1.38 | 1.69 × 10−1 | 0.13 |
Absence | 0.04 | 0.17 | 0.23 | 8.15 × 10−1 | 3.73 |
Vegetation | 0.01 | 0 | 3.01 | 2.59 × 10−3 ** | 13.05 *** |
Litter | −0.01 | 0 | −3 | 2.67 × 10−3 ** | 24.44 *** |
Bare Soil | 0 | 0 | 0.51 | 6.08 × 10−1 | 0.39 |
Stones | 0 | 0.01 | −0.72 | 4.72 × 10−1 | 0.51 |
Zone B | |||||
(Intercept) | −0.37 | 0.65 | −0.58 | 5.65 × 10−1 | |
Rocks | 0.63 | 0.22 | 2.82 | 4.81 × 10−3 ** | 10.08 ** |
Stones | 0.58 | 0.23 | 2.53 | 1.15 × 10−2 * | 1.45 |
Deadwood | 0.62 | 0.17 | 3.58 | 3.47 × 10−4 *** | 8.69 ** |
Tree cover | 1.69 | 0.27 | 6.21 | 5.21 × 10−10 *** | 0.03 *** |
Absence | 0.31 | 0.26 | 1.2 | 2.30 × 10−1 | 45.85 |
Vegetation | −0.05 | 0.01 | −7.05 | 1.78 × 10−12 *** | 61.38 *** |
Litter | −0.01 | 0.01 | −2.12 | 3.38 × 10−2 * | 6.87 ** |
Bare Soil | −0.01 | 0.01 | −1.39 | 1.66 × 10−1 | 1.14 |
Stones | −0.01 | 0.01 | −0.94 | 3.49 × 10−1 | 0.89 |
Zone C | |||||
(Intercept) | 0.34 | 0.79 | 0.44 | 6.63 × 10−1 | |
Rocks | 0.17 | 0.59 | 0.28 | 7.81 × 10−1 | 25.13 *** |
Stones | 0.03 | 0.44 | 0.08 | 9.40 × 10−1 | 39.08 *** |
Deadwood | −0.47 | 0.49 | −0.97 | 3.32 × 10−1 | 47.34 *** |
Tree cover | 0.73 | 0.3 | 2.46 | 1.38 × 10−2 * | 19.03 ** |
Absence | 3.15 | 0.62 | 5.11 | 3.20 × 10−7 *** | 7.32 |
Vegetation | −0.03 | 0.01 | −4.98 | 6.27 × 10−7 *** | 51.49 *** |
Litter | 0.01 | 0.01 | 1.53 | 1.27 × 10−1 | 2.53 |
Bare Soil | 0 | 0.01 | 0.26 | 7.96 × 10−1 | 0.03 |
Stones | 0 | 0.01 | 0.29 | 7.69 × 10−1 | 0.09 |
Facilitative Element | Estimate | Std. Error | z Value | Pr (>|z|) | Chi-Square |
---|---|---|---|---|---|
Zone A | |||||
(Intercept) | −1.76 | 0.38 | −4.68 | 2.93 × 10−6 *** | |
Rocks | 1.01 | 0.13 | 7.59 | 3.26 × 10−14 *** | 59.24 *** |
Stones | 0.26 | 0.15 | 1.72 | 8.47 × 10−2 | 3.77 |
Deadwood | −1.26 | 0.13 | −9.43 | <2 × 10−16 *** | 145.78 *** |
Tree cover | 0.36 | 0.26 | 1.38 | 1.69 × 10−1 | 0.13 |
Absence | −0.04 | 0.17 | −0.23 | 8.15 × 10−1 | 3.73 |
Vegetation | −0.01 | 0.00 | −3.01 | 2.59 × 10−3 ** | 13.05 *** |
Litter | 0.01 | 0.00 | 3.00 | 2.67 × 10−3 ** | 24.44 *** |
Bare Soil | 0.00 | 0.00 | −0.51 | 6.08 × 10−1 | 0.39 |
Stones | 0.00 | 0.01 | 0.72 | 4.72 × 10−1 | 0.51 |
Zone B | |||||
(Intercept) | 0.37 | 0.65 | 0.58 | 5.65 × 10−1 | |
Rocks | −0.63 | 0.22 | −2.82 | 4.81 × 10−3 ** | 10.08 ** |
Stones | −0.58 | 0.23 | −2.53 | 1.15 × 10−2 * | 1.45 |
Deadwood | −0.62 | 0.17 | −3.58 | 3.47 × 10−4 *** | 8.69 ** |
Tree cover | −1.69 | 0.27 | −6.21 | 5.21 × 10−10 *** | 0.03 *** |
Absence | −0.31 | 0.26 | −1.20 | 2.30 × 10−1 | 45.85 |
Vegetation | 0.05 | 0.01 | 7.05 | 1.78 × 10−12 *** | 61.38 *** |
Litter | 0.01 | 0.01 | 2.12 | 3.38 × 10−2 * | 6.87 ** |
Bare Soil | 0.01 | 0.01 | 1.39 | 1.66 × 10−1 | 1.14 |
Stones | 0.01 | 0.01 | 0.94 | 3.49 × 10−1 | 0.89 |
Zone C | |||||
(Intercept) | −0.34 | 0.79 | −0.44 | 6.63 × 10−1 | |
Rocks | −0.17 | 0.59 | −0.28 | 7.81 × 10−1 | 25.13 *** |
Stones | −0.03 | 0.44 | −0.08 | 9.40 × 10−1 | 39.08 *** |
Deadwood | 0.47 | 0.49 | 0.97 | 3.32 × 10−1 | 47.34 *** |
Tree cover | −0.73 | 0.30 | −2.46 | 1.38 × 10−2 * | 19.03 ** |
Absence | −3.15 | 0.62 | −5.11 | 3.20 × 10−7 *** | 7.32 *** |
Vegetation | 0.03 | 0.01 | 4.98 | 6.27 × 10−7 *** | 51.49 *** |
Litter | −0.01 | 0.01 | −1.53 | 1.27 × 10−1 | 2.53 |
Bare Soil | 0.00 | 0.01 | −0.26 | 7.96 × 10−1 | 0.03 |
Stones | 0.00 | 0.01 | −0.29 | 7.69 × 10−1 | 0.09 |
Soil Factors | Estimate | Std. Error | z Value | Pr (>|z|) | Chi-Square | Estimate | Std. Error | z Value | Pr (>|z|) | Chi-Square |
---|---|---|---|---|---|---|---|---|---|---|
Class I | Class II | |||||||||
Zone A | ||||||||||
(Intercept) | 7.92 | 2.81 | 2.82 | 4.87 × 10−3 ** | −2.53 | 3.5 | −0.72 | 0.47 | ||
N | −14.85 | 11.84 | −1.25 | 0.21 | 4.24 * | 25.94 | 14.73 | 1.76 | 0.08 | 0.09 |
Sand | 4.49 × 10−3 | 0.02 | 0.27 | 0.79 | 0.99 | 0.03 | 0.02 | 1.32 | 0.19 | 4.04 * |
Bulk density | 2.15 | 1.4 | 1.53 | 0.13 | 2.14 | 3.41 | 1.75 | 1.95 | 0.05 | 3.89 * |
Zone B | ||||||||||
(Intercept) | 7.28 | 2.24 | 3.25 | 1.17 × 10−3 ** | 7.44 | 2.1 | 3.54 | 3.99 × 10−4 *** | ||
N | 1.73 | 9.93 | 0.17 | 0.86 | 1.10 | 3.37 | 9.3 | 0.36 | 0.72 | 0.38 |
Sand | 0.05 | 0.02 | 3.19 | 1.40 × 10−3 ** | 5.60 * | 0.03 | 0.02 | 1.88 | 0.06 | 0.46 |
Bulk density | −1.74 | 0.81 | −2.14 | 0.03 * | 6.11 * | −1.37 | 0.76 | −1.8 | 0.07 | 4.51 * |
Zone C | ||||||||||
(Intercept) | −0.21 | 2.71 | −0.08 | 0.94 | −0.21 | 2.71 | −0.08 | 0.94 | ||
N | 66.18 | 16.19 | 4.089 | 4.34 × 10−5 *** | 34.01 * | 66.18 | 16.19 | 4.09 | 4.34 × 10−5 *** | 7.75 ** |
Sand | −0.03 | 0.02 | −1.65 | 0.1 | 1.84 | −0.03 | 0.02 | −1.65 | 0.1 | 466.3 *** |
Bulk density | −0.82 | 0.52 | −1.57 | 0.12 | 0.91 | −0.82 | 0.52 | −1.57 | 0.12 | 5.46 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, H.; Schwab, N.; Schickhoff, U. Seedling Recruitment at the Upper Limit of Tree Growth in the Alborz Mountains, Northern Iran: Safe Site Characteristics and Edaphic Conditions. Forests 2024, 15, 1952. https://doi.org/10.3390/f15111952
Moradi H, Schwab N, Schickhoff U. Seedling Recruitment at the Upper Limit of Tree Growth in the Alborz Mountains, Northern Iran: Safe Site Characteristics and Edaphic Conditions. Forests. 2024; 15(11):1952. https://doi.org/10.3390/f15111952
Chicago/Turabian StyleMoradi, Halime, Niels Schwab, and Udo Schickhoff. 2024. "Seedling Recruitment at the Upper Limit of Tree Growth in the Alborz Mountains, Northern Iran: Safe Site Characteristics and Edaphic Conditions" Forests 15, no. 11: 1952. https://doi.org/10.3390/f15111952
APA StyleMoradi, H., Schwab, N., & Schickhoff, U. (2024). Seedling Recruitment at the Upper Limit of Tree Growth in the Alborz Mountains, Northern Iran: Safe Site Characteristics and Edaphic Conditions. Forests, 15(11), 1952. https://doi.org/10.3390/f15111952