Climate Sensitivity and Tree Growth Patterns in Subalpine Spruce-Dominated Forests of the North-Western Dinaric Alps
Abstract
:1. Introduction
- (i)
- Investigate and analyze historical trends of radial growth of Norway spruce.H—The radial growth of Norway spruce will exhibit significant variations over time, reflecting the influence of climatic and environmental changes;
- (ii)
- Explore the relationship between radial growth and climate variables and identify the main climatic factors influencing Norway spruce growth in the study area.H—There is a significant correlation between the radial growth of Norway spruce and specific climate variables (temperature, precipitation and SPEI);
- (iii)
- Assess the influence of altitude on the direction and intensity of climate sensitivity along the local altitudinal gradient.H—The sensitivity of Norway spruce to climatic factors will vary with altitude, showing increased sensitivity to high temperature at lower elevations.
2. Materials and Methods
2.1. Research Area
2.2. Sampling Location and Data Collection
2.3. Measurement of the Tree Ring Width
2.4. Development of the Chronology
2.5. Climate Data
2.6. Climate–Growth Analysis
3. Results
3.1. Structural Characteristics of the Studied Stands
3.2. Basic Statistical Indicators of the Measured Tree Ring Width (TRW) Series
3.3. Climatic Characteristics
3.4. Long-Term Trends in Basal Area Increment (BAI)
3.5. Tree Ring Width Chronologies (RWIs)
3.6. Influence of Climatic Factors on Tree Growth
3.7. Stability of Climate Sensitivity
3.8. Common Climatic Signal
3.9. The Influence of Altitude on the Strength of the Climate Signal
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartl, C.; Zang, C.; Dittmar, C.; Esper, J.; Göttlein, A.; Rothe, A. Vulnerability of Norway Spruce to Climate Change in Mountain Forests of the European Alps. Clim. Res. 2014, 60, 119–132. [Google Scholar] [CrossRef]
- Krejza, J.; Cienciala, E.; Světlík, J.; Bellan, M.; Noyer, E.; Horáček, P.; Štěpánek, P.; Marek, M.V. Evidence of Climate-Induced Stress of Norway Spruce along Elevation Gradient Preceding the Current Dieback in Central Europe. Trees 2021, 35, 103–119. [Google Scholar] [CrossRef]
- Carrer, M.; Motta, R.; Nola, P. Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps. PLoS ONE 2012, 7, e50755. [Google Scholar] [CrossRef]
- Seidl, R.; Müller, J.; Hothorn, T.; Bässler, C.; Heurich, M.; Kautz, M. Small Beetle, Large-Scale Drivers: How Regional and Landscape Factors Affect Outbreaks of the European Spruce Bark Beetle. J. Appl. Ecol. 2016, 53, 530–540. [Google Scholar] [CrossRef]
- Altman, J.; Fibich, P.; Santruckova, H.; Dolezal, J.; Stepanek, P.; Kopacek, J.; Hunova, I.; Oulehle, F.; Tumajer, J.; Cienciala, E. Environmental Factors Exert Strong Control over the Climate-Growth Relationships of Picea abies in Central Europe. Sci. Total Environ. 2017, 609, 506–516. [Google Scholar] [CrossRef]
- Zang, C.; Hartl-Meier, C.; Dittmar, C.; Rothe, A.; Menzel, A. Patterns of Drought Tolerance in Major European Temperate Forest Trees: Climatic Drivers and Levels of Variability. Glob. Change Biol. 2014, 20, 3767–3779. [Google Scholar] [CrossRef] [PubMed]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant Increase in Natural Disturbance Impacts on European Forests since 1950. Glob. Change Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Lie, M.H.; Asplund, J.; Göhl, M.; Ohlson, M.; Nybakken, L. Similar Growth Responses to Climatic Variations in Norway Spruce (Picea abies) and European Beech (Fagus Sylvatica) at the Northern Range Limit of Beech. Eur. J. For. Res. 2023, 142, 1059–1068. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive Shifts in Forest Dynamics in a Changing World. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- Albrich, K.; Rammer, W.; Seidl, R. Climate Change Causes Critical Transitions and Irreversible Alterations of Mountain Forests. Glob. Change Biol. 2020, 26, 4013–4027. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Ma, D.; Wu, S. Climate Change Risk to Forests in China Associated with Warming. Sci. Rep. 2018, 8, 493. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought Response of Five Conifer Species under Contrasting Water Availability Suggests High Vulnerability of Norway Spruce and European Larch. Glob. Change Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK; New York, NY, USA, 1976. [Google Scholar]
- Ponocna, T.; Czajka, B.; Kaczka, R.; Büntgen, U.; Treml, V. Growth Trends and Climate Responses of Norway Spruce along Elevational Gradients in East-Central Europe. Trees 2016, 30, 1633–1646. [Google Scholar] [CrossRef]
- King, G.M.; Gugerli, F.; Fonti, P.; Frank, D.C. Tree Growth Response along an Elevational Gradient: Climate or Genetics? Oecologia 2013, 173, 1587–1600. [Google Scholar] [CrossRef]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T.; et al. Site-and Species-Specific Responses of Forest Growth to Climate across the European Continent: Climate Sensitivity of Forest Growth across Europe. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Mitchell, A.F. Field Guide to the Trees of Britain and Northern Europe. Available online: https://biblio.co.nz/book/field-guide-trees-britain-northern-europe/d/1494851277 (accessed on 21 February 2024).
- Fritts, H.C. Tree-Ring Evidence for Climatic Changes in Western North America. Mon. Weather. Rev. 1965, 93, 421–443. [Google Scholar] [CrossRef]
- Chen, L.; Wu, S.; Pan, T. Variability of Climate–Growth Relationships along an Elevation Gradient in the Changbai Mountain, Northeastern China. Trees 2011, 25, 1133–1139. [Google Scholar] [CrossRef]
- Báez, S.; Fadrique, B.; Feeley, K.; Homeier, J. Changes in Tree Functional Composition across Topographic Gradients and through Time in a Tropical Montane Forest. PLoS ONE 2022, 17, e0263508. [Google Scholar] [CrossRef]
- Savva, Y.; Oleksyn, J.; Reich, P.B.; Tjoelker, M.G.; Vaganov, E.A.; Modrzynski, J. Interannual Growth Response of Norway Spruce to Climate along an Altitudinal Gradient in the Tatra Mountains, Poland. Trees 2006, 20, 735–746. [Google Scholar] [CrossRef]
- Hartl-Meier, C.; Dittmar, C.; Zang, C.; Rothe, A. Mountain Forest Growth Response to Climate Change in the Northern Limestone Alps. Trees 2014, 28, 819–829. [Google Scholar] [CrossRef]
- Obladen, N.; Dechering, P.; Skiadaresis, G.; Tegel, W.; Keßler, J.; Höllerl, S.; Kaps, S.; Hertel, M.; Dulamsuren, C.; Seifert, T.; et al. Tree Mortality of European Beech and Norway Spruce Induced by 2018–2019 Hot Droughts in Central Germany. Agric. For. Meteorol. 2021, 307, 108482. [Google Scholar] [CrossRef]
- Čermák, P.; Rybníček, M.; Žid, T.; Steffenrem, A.; Kolář, T. Site and Age-Dependent Responses of Picea abies Growth to Climate Variability. Eur. J. For. Res. 2019, 138, 445–460. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European Tree Species to Drought Stress in Mixed versus Pure Forests: Evidence of Stress Release by Inter-specific Facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Honkaniemi, J.; Rammer, W.; Seidl, R. Norway Spruce at the Trailing Edge: The Effect of Landscape Configuration and Composition on Climate Resilience. Landsc. Ecol. 2020, 35, 591–606. [Google Scholar] [CrossRef]
- Bosela, M.; Tumajer, J.; Cienciala, E.; Dobor, L.; Kulla, L.; Marčiš, P.; Popa, I.; Sedmák, R.; Sedmáková, D.; Sitko, R.; et al. Climate Warming Induced Synchronous Growth Decline in Norway Spruce Populations across Biogeographical Gradients since 2000. Sci. Total Environ. 2021, 752, 141794. [Google Scholar] [CrossRef]
- Edenhofer, O.; IPCC (Eds.) Climate Change 2014: Mitigation of Climate Change. In Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change 2014; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Bennett, S.; Wernberg, T.; Arackal Joy, B.; de Bettignies, T.; Campbell, A.H. Central and Rear-Edge Populations Can Be Equally Vulnerable to Warming. Nat. Commun. 2015, 6, 10280. [Google Scholar] [CrossRef]
- Carnicer, J.; Vives-Ingla, M.; Blanquer, L.; Méndez-Camps, X.; Rosell, C.; Sabaté, S.; Gutiérrez, E.; Sauras, T.; Peñuelas, J.; Barbeta, A. Forest Resilience to Global Warming Is Strongly Modulated by Local-Scale Topographic, Microclimatic and Biotic Conditions. J. Ecol. 2021, 109, 3322–3339. [Google Scholar] [CrossRef]
- Vilà-Cabrera, A.; Jump, A.S. Greater Growth Stability of Trees in Marginal Habitats Suggests a Patchy Pattern of Population Loss and Retention in Response to Increased Drought at the Rear Edge. Ecol. Lett. 2019, 22, 1439–1448. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopcic, M.; Keren, S.; Svoboda, M.; Diaci, J.; Boncina, A.; Paulic, V. The Natural Disturbance Regime in Forests of the Dinaric Mountains: A Synthesis of Evidence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Šumskogospodarska Osnova 2016–2025. Available online: https://poljoprivreda.gov.hr/istaknute-teme/sume-112/sumarstvo/sumskogospodarska-osnova-2016-2025/250 (accessed on 10 April 2024).
- Begović, K.; Rydval, M.; Mikac, S.; Čupić, S.; Svobodova, K.; Mikoláš, M.; Kozák, D.; Kameniar, O.; Frankovič, M.; Pavlin, J.; et al. Climate-Growth Relationships of Norway Spruce and Silver Fir in Primary Forests of the Croatian Dinaric Mountains. Agric. For. Meteorol. 2020, 288–289, 108000. [Google Scholar] [CrossRef]
- Levanič, T.; Gričar, J.; Gagen, M.; Jalkanen, R.; Loader, N.J.; McCarroll, D.; Oven, P.; Robertson, I. The Climate Sensitivity of Norway Spruce [Picea abies (L.) Karst.] in the Southeastern European Alps. Trees 2008, 23, 169. [Google Scholar] [CrossRef]
- Vukelić, J.; Rukavina, M. Šumska vegetacija sjevernoga Velebita. In Šume I Šumarstvo Sjevernoga Velebita; CROSBI: Zagreb, Croatia, 2005. [Google Scholar]
- Perica, D.; Orešić, D. Klimatska obilježja velebita i njihov utjecaj na oblikovanje reljefa. Senj. Zb. Pril. Za Geogr. Etnologiju Gospod. Povij. Kult. 1999, 26, 1–48. [Google Scholar]
- Marinović, I.; Cindrić Kalin, K. Temperaturne Prilike Na Području Velebita; CROSBI: Zagreb, Croatia, 2022; p. 56. [Google Scholar]
- Cybis.se: Technical Writing, Software Development, Dendrochronology. Available online: https://www.cybis.se/ (accessed on 10 April 2024).
- Levanič, T. Atrics–A New System for Image Acquisition in Dendrochronology. Tree-Ring Res. 2007, 63, 117–122. [Google Scholar] [CrossRef]
- Rinntech-Technology for Tree and Wood Analysis-Home. Available online: https://www.rinntech.com/index-9671.php (accessed on 10 April 2024).
- Baillie, M.G.L.; Pilcher, J.R. A Simple Crossdating Program for Tree-Ring Research; The University of Arizona: Tucson, AZ, USA, 1973. [Google Scholar]
- Schweingruber, F.H. Tree Rings: Basics and Applications of Dendrochronology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree Ring Bull. 1983, 44, 69–78. [Google Scholar]
- Cook, E.R.; Peters, K. Calculating Unbiased Tree-Ring Indices for the Study of Climatic and Environmental Change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Bunn, A.G. A Dendrochronology Program Library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Mosteller, F.; Tukey, J.W. Data Analysis and Regression: A Second Course in Statistics; Addison-Wesley Pub. Co.: Reading, MA, USA, 1977. [Google Scholar]
- Douglass, A.E. Evidence of Climatic Effects in the Annual Rings of Trees. Ecology 1920, 1, 24–32. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree Ring Research; UAPress: Tucson, AZ, USA. Available online: https://uapress.arizona.edu/book/fundamentals-of-tree-ring-research (accessed on 25 September 2024).
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Bunn, A.; Korpela, M.; Biondi, F. dplR: Dendrochronology Program Library in R. R Package, Version 1.7.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Haylock, M.; Hofstra, N.; Tank, A.; Klok, E.; Jones, P.; New, M. A European Daily High-Resolution Gridded Data Set of Surface Temperature and Precipitation for 1950–2006. J. Geophys. Res. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Markus, Z.; Rauthe-Schöch, A.; Hänsel, S.; Finger, P.; Rustemeier, E.; Schneider, U. GPCC Full Data Daily Version 2022 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data; Globally Gridded Daily Totals: Broadway Boulder, CO, USA, 2022. [CrossRef]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. Treeclim: An R Package for the Numerical Calibration of Proxy-Climate Relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Čermák, P.; Rybníček, M.; Žid, T.; Andreassen, K.; Børja, I.; Kolář, T. Impact of Climate Change on Growth Dynamics of Norway Spruce in South-Eastern Norway. Silva Fenn. 2017, 51, 1781. [Google Scholar] [CrossRef]
- Kalliokoski, T. Root system traits of Norway spruce, Scots pine, and silver birch in mixed boreal forests: An analysis of root architecture, morphology, and anatomy. Diss. For. 2011, 121, 67. [Google Scholar] [CrossRef]
- Børja, I.; De Wit, H.A.; Steffenrem, A.; Majdi, H. Stand Age and Fine Root Biomass, Distribution and Morphology in a Norway Spruce Chronosequence in Southeast Norway. Tree Physiol. 2008, 28, 773–784. [Google Scholar] [CrossRef]
- Jevsenak, J.; Tychkov, I.; Gricar, J.; Levanic, T.; Tumajer, J.; Prislan, P.; Arnič, D.; Popkova, M.; Shishov, V. Growth-Limiting Factors and Climate Response Variability in Norway Spruce (Picea abies L.) along an Elevation and Precipitation Gradients in Slovenia. Int. J. Biometeorol. 2020, 65, 311–324. [Google Scholar] [CrossRef]
- Buntgen, U.; Frank, D.C.; Kaczka, R.J.; Verstege, A.; Zwijacz-Kozica, T.; Esper, J. Growth Responses to Climate in a Multi-Species Tree-Ring Network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol. 2007, 27, 689–702. [Google Scholar] [CrossRef]
- Andreassen, K.; Solberg, S.; Tveito, O.E.; Lystad, S.L. Regional Differences in Climatic Responses of Norway Spruce (Picea abies L. Karst) Growth in Norway. For. Ecol. Manag. 2006, 222, 211–221. [Google Scholar] [CrossRef]
- Bouriaud, O.; Popa, I. Comparative Dendroclimatic Study of Scots Pine, Norway Spruce, and Silver Fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 2009, 23, 95–106. [Google Scholar] [CrossRef]
- Basnet, S.; Burger, A.; Homolová, Z.; Märker, F.; Trouillier, M.; Wilmking, M. Effect of Bedrock, Tree Size and Time on Growth and Climate Sensitivity of Norway Spruce in the High Tatras. Eur. J. For. Res. 2024. [Google Scholar] [CrossRef]
- D’Andrea, G.; Šimůnek, V.; Pericolo, O.; Vacek, Z.; Vacek, S.; Corleto, R.; Olejár, L.; Ripullone, F. Growth Response of Norway Spruce (Picea abies [L.] Karst.) in Central Bohemia (Czech Republic) to Climate Change. Forests 2023, 14, 1215. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate Change in Mountains: A Review of Elevation-Dependent Warming and Its Possible Causes. Clim. Change 2012, 114, 527–547. [Google Scholar] [CrossRef]
ID | Lat. | Long. | Elev. (m a.s.l.) | Age (Years) | DBH (cm) | H (m) | N (pcs.ha−1) |
---|---|---|---|---|---|---|---|
P01 | 44.80° | 14.97° | 1545 | 117 (61–149) | 33.0 (12–60.9) | 21.8 (15.1–27.5) | 560 |
P02 | 44.77° | 15.00° | 1340 | 169 (122–190) | 36.5 (17–58.7) | 25.2 (10.8–32.9) | 440 |
P03 | 44.74° | 15.01° | 1295 | 148 (88–190) | 46.5 (21–75) | 28.5 (15.9–38.7) | 560 |
P04 | 44.75° | 14.98° | 1455 | 147 (98–180) | 41.0 (16.4–57.3) | 23.0 (9.1–29.9) | 420 |
P05 | 44.77° | 15.00° | 1358 | 168 (49–194) | 45.3 (15–70.5) | 29.0 (9.1–37.2) | 430 |
P06 | 44.76° | 14.97° | 1350 | 158 (92–186) | 49.6 (24.2–74.9) | 31.4 (14.7–38.8) | 620 |
P07 | 44.74° | 15.01° | 1315 | 126 (100–147) | 40.0 (19.1–72.2) | 27.3 (8.7–37.7) | 580 |
P08 | 44.69° | 15.05° | 1135 | 135 (107–210) | 68.1 (53.0–91.2) | 35.2 (32.8–38.8) | 360 |
P09 | 44.70° | 15.02° | 1325 | 174 (161–186) | 33.4 (10.4–58.9) | 20.5 (8.7–27.5) | 820 |
P10 | 44.78° | 15.02° | 1470 | 158 (102–171) | 47.8 (15.3–72.3) | 27.8 (5.9–35.3) | 560 |
Plots | Trees/Series | Span | Mean | MS | AR | Rbar | EPS > 0.85 |
---|---|---|---|---|---|---|---|
P01 | 33 (59) | 165 | 1.39 | 0.21 | 0.79 | 0.72 | 1860–2018 |
P02 | 26 (49) | 188 | 0.98 | 0.18 | 0.89 | 0.90 | 1837–2018 |
P03 | 32 (58) | 184 | 1.50 | 0.18 | 0.82 | 0.76 | 1854–2020 |
P04 | 17 (31) | 171 | 1.42 | 0.17 | 0.81 | 0.81 | 1864–2020 |
P05 | 36 (63) | 191 | 1.19 | 0.16 | 0.84 | 0.83 | 1834–2020 |
P06 | 40 (67) | 194 | 1.54 | 0.17 | 0.85 | 0.81 | 1839–2021 |
P07 | 43 (81) | 144 | 1.48 | 0.18 | 0.76 | 0.72 | 1883–2021 |
P08 | 16 (32) | 192 | 2.49 | 0.20 | 0.88 | 0.70 | 1887–2020 |
P09 | 24 (42) | 179 | 1.02 | 0.18 | 0.82 | 0.80 | 1851–2022 |
P10 | 24 (47) | 168 | 1.83 | 0.16 | 0.87 | 0.86 | 1862–2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orešković, M.; Trlin, D.; Anić, I.; Oršanić, M.; Prša, L.; Mikac, S. Climate Sensitivity and Tree Growth Patterns in Subalpine Spruce-Dominated Forests of the North-Western Dinaric Alps. Forests 2024, 15, 1972. https://doi.org/10.3390/f15111972
Orešković M, Trlin D, Anić I, Oršanić M, Prša L, Mikac S. Climate Sensitivity and Tree Growth Patterns in Subalpine Spruce-Dominated Forests of the North-Western Dinaric Alps. Forests. 2024; 15(11):1972. https://doi.org/10.3390/f15111972
Chicago/Turabian StyleOrešković, Marko, Domagoj Trlin, Igor Anić, Milan Oršanić, Luka Prša, and Stjepan Mikac. 2024. "Climate Sensitivity and Tree Growth Patterns in Subalpine Spruce-Dominated Forests of the North-Western Dinaric Alps" Forests 15, no. 11: 1972. https://doi.org/10.3390/f15111972
APA StyleOrešković, M., Trlin, D., Anić, I., Oršanić, M., Prša, L., & Mikac, S. (2024). Climate Sensitivity and Tree Growth Patterns in Subalpine Spruce-Dominated Forests of the North-Western Dinaric Alps. Forests, 15(11), 1972. https://doi.org/10.3390/f15111972