A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. UAV Hyperspectral Data Acquisition and Preprocessing
2.2.2. LCC Measurement
2.3. Ensembled Feature Selection Framework
2.3.1. Embedded Algorithm Improvements
2.3.2. Wrapper Algorithm
2.4. Regression Algorithm
2.4.1. GBRT
2.4.2. SVR
2.4.3. GPR
2.5. Comparative Experiments
- (1)
- The first experiment was conducted using a simpler filter method based on the absolute value of the Pearson correlation coefficient (APCC). The bands with APCC values greater than 0.6, which are considered linearly correlated, were used to construct the LCC estimation model.
- (2)
- The second experiment was conducted using the ensemble algorithm. A fixed GBRT ranking and the stepwise band reduction process were used to identify the bands for LCC estimation.
- (3)
- The third experiment used the results of the second experiment and employed the same wrapper algorithm used in the framework to identify the optimal bands for LCC estimation.
2.6. Model Performance Evaluation
3. Results
3.1. Initial Band Subset Developed Using the Improved Embedded Feature Selection Algorithm
3.2. Optimal Models Developed Using the Ensembled Feature Selection Framework
3.3. Model Performances of Comparative Experiments
4. Discussion
5. Conclusions
- (1)
- The improved embedded feature selection algorithm produced more robust and reliable band rankings. By introducing SHAP values and a dynamic ranking strategy, redundant and low-correlation bands were identified with greater precision across different regression algorithms.
- (2)
- The ensemble feature selection framework improved the efficiency of optimal subset selection in hyperspectral data. Although the improved embedded algorithm had a limited impact on model accuracy, it provided a strong band subset for the wrapper algorithm. The combination of both feature selection approaches reduced the risk of converging to a local optimum.
- (3)
- RE bands are critical for developing accurate LCC estimation model for Populus deltoides. By incorporating several RE bands in the 680–760 nm range, the underestimation problem at high LCC levels was mitigated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Chu, Y.; Ding, C.; Su, X.; Huang, Q. Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using simple sequence repeat markers. BMC Genet. 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.A.; Burley, J.; Cook, R.; Ghezehei, S.B.; Hazel, D.W.; Nichols, E.G. Tree water use, water use efficiency, and carbon isotope discrimination in relation to growth potential in Populus deltoides and hybrids under field conditions. Forests 2019, 10, 993. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Wen, W.; Gu, S.; Lu, X.; Guo, X. The future of Internet of Things in agriculture: Plant high-throughput phenotypic platform. J. Clean. Prod. 2021, 280, 123651. [Google Scholar] [CrossRef]
- Shi, C.; Yang, F.; Liu, Z.; Li, Y.; Di, X.; Wang, J.; Lin, J. Uniform water potential induced by salt, alkali, and drought stresses has different impacts on the seedling of Hordeum jubatum: From growth, photosynthesis, and chlorophyll fluorescence. Front. Plant Sci. 2021, 12, 733236. [Google Scholar] [CrossRef]
- Patane, P.; Vibhute, A. Chlorophyll and nitrogen estimation techniques: A Review. Int. J. Eng. Res. 2014, 2, 33–41. [Google Scholar]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of leaf chlorophyll content models for winter wheat using Landsat-8 multispectral remote sensing data. Remote Sens. 2020, 12, 2574. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Chen, J.M.; Croft, H.; Luo, X.; Zheng, T.; Zheng, T.; Rogers, C.; Liu, J. Fine-scale leaf chlorophyll distribution across a deciduous forest through two-step model inversion from Sentinel-2 data. Remote Sens. Environ. 2021, 264, 112618. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Sun, Z.; Yang, T.; Li, J.; Peng, J.; Zhu, K.; Li, S.; Gong, H.; Lyu, Y.; Li, B.; et al. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales. Comput. Electron. Agric. 2020, 178, 105786. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.; Sun, Y.; Zhang, T.; Sun, H.; Li, M. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Xu, L.; Shi, S.; Gong, W.; Shi, Z.; Qu, F.; Tang, X.; Chen, B.; Sun, J. Improving leaf chlorophyll content estimation through constrained PROSAIL model from airborne hyperspectral and LiDAR data. Int. J. Appl. Earth Obs. 2022, 115, 103128. [Google Scholar] [CrossRef]
- Yan, P.; Feng, Y.; Han, Q.; Hu, Z.; Huang, X.; Su, K.; Kang, S. Enhanced cotton chlorophyll content estimation with UAV multispectral and LiDAR constrained SCOPE model. Int. J. Appl. Earth Obs. 2024, 132, 104052. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Coops, N.C.; Fan, H.; Wu, X.; Liu, H.; Wang, G.; Cao, F. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sens. Environ. 2020, 250, 112041. [Google Scholar] [CrossRef]
- Hosoi, F.; Umeyama, S.; Kuo, K. Estimating 3D chlorophyll content distribution of trees using an image fusion method between 2D camera and 3D portable scanning lidar. Remote Sens. 2019, 11, 2134. [Google Scholar] [CrossRef]
- Buckley, S.J.; Kurz, T.H.; Howell, J.A.; Schneider, D. Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Comput. Geosci. 2013, 54, 249–258. [Google Scholar] [CrossRef]
- Incekara, A.H.; Seker, D.Z.; Bayram, B. Qualifying the LIDAR-derived intensity image as an infrared band in NDWI-based shoreline extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5053–5062. [Google Scholar] [CrossRef]
- Sonobe, R.; Sugimoto, Y.; Kondo, R.; Seki, H.; Sugiyama, E.; Kiriiwa, Y.; Suzuki, K. Hyperspectral wavelength selection for estimating chlorophyll content of muskmelon leaves. Eur. J. Remote Sens. 2021, 54, 513–524. [Google Scholar] [CrossRef]
- Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019). IEEE Access 2021, 9, 26766–26791. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, Q.; Chen, Y.; Liu, Y.; Jiang, D.; Zhang, Z. Hyperspectral estimation of chlorophyll content in apple tree leaf based on feature band selection and the CatBoost model. Agronomy 2023, 13, 2075. [Google Scholar] [CrossRef]
- Zhao, R.; Tang, W.; Liu, M.; Wang, N.; Sun, H.; Li, M.; Ma, Y. Spatial-spectral feature extraction for in-field chlorophyll content estimation using hyperspectral imaging. Biosyst. Eng. 2024, 246, 263–276. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, T.; Zhang, X.; Jia, K.; Jiang, H.; Yuan, B. A hybrid leaf area index estimation method of dioscorea polystachya turczaninow using Sentinel-2 vegetation indices. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4415713. [Google Scholar] [CrossRef]
- Chakhvashvili, E.; Siegmann, B.; Muller, O.; Verrelst, J.; Bendig, J.; Kraska, T.; Rascher, U. Retrieval of crop variables from proximal multispectral UAV image data using PROSAIL in maize canopy. Remote Sens. 2022, 14, 1247. [Google Scholar] [CrossRef]
- Impollonia, G.; Croci, M.; Blandinières, H.; Marcone, A.; Amaducci, S. Comparison of PROSAIL model inversion methods for estimating leaf chlorophyll content and LAI using UAV imagery for hemp phenotyping. Remote Sens. 2022, 14, 5801. [Google Scholar] [CrossRef]
- Wang, B.; Jia, K.; Liang, S.; Xie, X.; Wei, X.; Zhao, X.; Yao, Y.; Zhang, X. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover. Remote Sens. 2018, 10, 1927. [Google Scholar] [CrossRef]
- Ta, N.; Chang, Q.; Zhang, Y. Estimation of apple tree leaf chlorophyll content based on machine learning methods. Remote Sens. 2021, 13, 3902. [Google Scholar] [CrossRef]
- Li, D.; Hu, Q.; Ruan, S.; Liu, J.; Zhang, J.; Hu, C.; Liu, Y.; Dian, Y.; Zhou, J. Utilizing Hyperspectral Reflectance and Machine Learning Algorithms for Non-Destructive Estimation of Chlorophyll Content in Citrus Leaves. Remote Sens. 2023, 15, 4934. [Google Scholar] [CrossRef]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. Peer J. 2019, 7, e6926. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, W.; Zhang, M.; Feng, M.; Xiao, L.; Ding, G. Estimation of water content in corn leaves using hyperspectral data based on fractional order Savitzky-Golay derivation coupled with wavelength selection. Comput. Electron. Agric. 2021, 182, 105989. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef]
- Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef] [PubMed]
- Amoozegar, M.; Minaei-Bidgoli, B. Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism. Expert Syst. Appl. 2018, 113, 499–514. [Google Scholar] [CrossRef]
- Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B. A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans. Cybern. 2016, 47, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Majid-Mirza, A.; Ali-Khan, S. PSO-GA based optimized feature selection using facial and clothing information for gender classification. J. Appl. Res. Technol. 2014, 12, 145–152. [Google Scholar] [CrossRef]
- Ghosh, M.; Guha, R.; Alam, I.; Lohariwal, P.; Jalan, D.; Sarkar, R. Binary genetic swarm optimization: A combination of GA and PSO for feature selection. Int. J. Intell. Syst. 2019, 29, 1598–1610. [Google Scholar] [CrossRef]
- Li, L.; Dai, S.; Cao, Z.; Hong, J.; Jiang, S.; Yang, K. Using improved gradient-boosted decision tree algorithm based on Kalman filter (GBDT-KF) in time series prediction. J. Supercomput. 2020, 76, 6887–6900. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, R.; Bajorath, J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J. Comput.-Aided Mol. Des. 2022, 36, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Bareth, R.; Kochar, M.; Pazoki, M.; Sehiemy, R.A.E. Gaussian process regression-based load forecasting model. IET Gener. Transm. Distrib. 2024, 18, 899–910. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Luo, X.; Zhao, H. Diagnosis of Parkinson’s disease based on SHAP value feature selection. Biocybern. Biomed. Eng. 2022, 42, 856–869. [Google Scholar] [CrossRef]
- Huang, H.; Jia, R.; Shi, X.; Liang, J.; Dang, J. Feature selection and hyper parameters optimization for short-term wind power forecast. Appl. Intell. 2021, 51, 6752–6770. [Google Scholar] [CrossRef]
- Behkamal, B.; Entezami, A.; De Michele, C.; Arslan, A.N. Elimination of thermal effects from limited structural displacements based on remote sensing by machine learning techniques. Remote Sens. 2023, 15, 3095. [Google Scholar] [CrossRef]
- Aggarwal, M.; Khullar, V.; Goyal, N.; Singh, A.; Tolba, A.; Thompson, E.B.; Kumar, S. Pre-trained deep neural network-based features selection supported machine learning for rice leaf disease classification. Agriculture 2023, 13, 936. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, T.; Chen, S. Red-Edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 826–840. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, K.; Wei, X.; Liu, Y.; Zhan, Y.; Xia, M.; Yao, Y.; Zhang, X. Improving leaf area index estimation accuracy of wheat by involving leaf chlorophyll content information. Comput. Electron. Agric. 2022, 196, 106902. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Feng, H.; Han, S.; Zhou, C.; Fu, Y.; Gao, W.; Ma, X.; Qiao, H.; Yang, G. Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation. Comput. Electron. Agric. 2023, 211, 108011. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecol. Indic. 2020, 162, 112001. [Google Scholar] [CrossRef]
- Gu, C.; Li, J.; Liu, Q.; Zhang, H.; Liu, L.; Mumtaz, F.; Dong, Y.; Zhao, J.; Wang, X.; Liu, C. Retrieving decametric-resolution leaf chlorophyll content from GF-6 WFV by assessing the applicability of red-edge vegetation indices. Comput. Electron. Agric. 2023, 215, 108455. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Zhang, Z. Improving leaf area index estimation with chlorophyll insensitive multispectral red-edge vegetation indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3568–3582. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Jay, S.; Wei, S.; Zhao, N.; Comar, A.; Lopez-Lozano, R.; Solan, B.; Yu, Q.; Wu, Q.; et al. Daily monitoring of Effective Green Area Index and Vegetation Chlorophyll Content from continuous acquisitions of a multi-band spectrometer over winter wheat. Remote Sens. Environ. 2024, 300, 113883. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Heckmann, D.; Schlüter, U.; Weber, A.P. Machine learning techniques for predicting crop photosynthetic capacity from leaf reflectance spectra. Mol. Plant. 2017, 10, 878–890. [Google Scholar] [CrossRef]
Regression Algorithm | Achieved Using the Initial Band Subset | Achieved Using the Optimal Band Subset |
---|---|---|
GBRT | 20.89% | 24.37% |
SVR | 12.42% | 31.91% |
GPR | 12.02% | 25.41% |
Model | Wavelength of Bands Used in the Model |
---|---|
GBRT-Optimal | 393 nm, 395 nm, 397 nm, 431 nm, 437 nm, 439 nm, 441 nm, 449 nm, 461 nm, 519 nm, 555 nm, 669 nm, 679 nm, 681 nm, 683 nm, 691 nm, 695 nm, 697 nm, 701 nm, 703 nm, 715 nm, 723 nm, 731 nm, 741 nm, 747 nm, 751 nm, 887 nm, 891 nm |
SVR-Optimal | 393 nm, 395 nm, 397 nm, 417 nm, 431 nm, 439 nm, 441 nm, 457 nm, 459 nm, 487 nm, 523 nm, 525 nm, 537 nm, 539 nm, 555 nm, 557 nm, 579 nm, 611 nm, 641 nm, 679 nm, 691 nm, 695 nm, 709 nm, 721 nm, 729 nm, 739 nm, 741 nm, 751 nm, 761 nm, 763 nm, 801 nm, 855 nm, 861 nm, 873 nm, 879 nm, 885 nm |
GPR-Optimal | 395 nm, 405 nm, 425 nm, 431 nm, 471 nm, 473 nm, 479 nm, 509 nm, 513 nm, 519 nm, 521 nm, 575 nm, 603 nm, 633 nm, 675 nm, 689 nm, 697 nm, 699 nm, 707 nm, 711 nm, 725 nm, 737 nm, 805 nm, 843 nm, 859 nm, 875 nm, 879 nm, 883 nm, 889 nm |
Regression Algorithm | Achieved Using the Initial Band Subset | Achieved Using the Optimal Band Subset |
---|---|---|
GBRT | −1.47% | 1.31% |
SVR | −10.31% | 12.87% |
GPR | 7.52% | 15.97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wang, X.; Qiao, S.; Liu, H.; Shi, M.; Chen, X.; Jiang, H.; Zou, H. A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data. Forests 2024, 15, 1971. https://doi.org/10.3390/f15111971
Chen Z, Wang X, Qiao S, Liu H, Shi M, Chen X, Jiang H, Zou H. A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data. Forests. 2024; 15(11):1971. https://doi.org/10.3390/f15111971
Chicago/Turabian StyleChen, Zhulin, Xuefeng Wang, Shijiao Qiao, Hao Liu, Mengmeng Shi, Xingjing Chen, Haiying Jiang, and Huimin Zou. 2024. "A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data" Forests 15, no. 11: 1971. https://doi.org/10.3390/f15111971
APA StyleChen, Z., Wang, X., Qiao, S., Liu, H., Shi, M., Chen, X., Jiang, H., & Zou, H. (2024). A Leaf Chlorophyll Content Estimation Method for Populus deltoides (Populus deltoides Marshall) Using Ensembled Feature Selection Framework and Unmanned Aerial Vehicle Hyperspectral Data. Forests, 15(11), 1971. https://doi.org/10.3390/f15111971