The Future Migration Direction of Deer and Japanese Yew Is Consistent Under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collect Japanese Yew Sites and Deer Feeding Sites on Japanese Yew
2.3. Acquisition of Variable
2.4. Climate Change Projections
2.5. Modelling Future Habitat Suitability
2.6. Centroid Migration of Japanese Yew and Deer in the Future
3. Results
3.1. Currently Suitable Region for Japanese Yew
3.2. Future Japanese Yew Habitat Suitability
3.3. Future Suitable for Deer to Feeding Japanese Yew Region
3.4. Changes in the Area of Deer Feeding Japanese Yew in the Future
3.5. Future Centroid Migration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, W.; Yang, N.; Yang, B.; Li, Y.; Zhang, J.; Chen, D.; Zhou, C.; Zhong, X.; Zhang, J. Impacts of climate change on potential geographical distribution of golden pheasant (Chrysolophus pictus), an endemic species in China. Chin. J. Ecol. 2021, 40, 1783–1792. [Google Scholar]
- Yang, Z.; Han, S.; Li, Y.; Wang, J.; He, H. Impacts and assessment of climate change on the global distribution of potentially suitable habitats for Panthera uncia. Acta Ecol. Sin. 2023, 43, 1412–1425. [Google Scholar]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Hannah, L.; Andelman, S.; Midgley, G.; Araújo, M.; Hughes, G.; Manne, L.; Martinez-Meyer, E.; Pearson, R. Planning for climate change: Identifying minimum-dispersal corridors for the Cape proteaceae. Conserv. Biol. 2005, 19, 1063–1074. [Google Scholar] [CrossRef]
- Tape, K.D.; Christie, K.; Carroll, G.; O’donnell, J.A. Novel wildlife in the Arctic: The influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Glob. Chang. Biol. 2016, 22, 208–219. [Google Scholar] [CrossRef]
- Nolan, C.; Overpeck, J.T.; Allen JR, M.; Anderson, P.M.; Betancourt, J.L.; Binney, H.A.; Brewer, S.; Bush, M.B.; Chase, B.M.; Cheddadi, R.; et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 2018, 361, 920–923. [Google Scholar] [CrossRef]
- Gong, M.H.; Guan, T.P.; Hou, M.; Liu, G.; Zhou, T.Y. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 2017, 7, 596–605. [Google Scholar] [CrossRef]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M. IPCC 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007; Chapter 1, 95–123. Available online: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (accessed on 10 June 2024).
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Sharma, S.; Andrus, R.; Bergeron, Y.; Bogdziewicz, M.; Bragg, D.C.; Brockway, D.; Cleavitt, N.L.; Courbaud, B.; Das, A.J.; Dietze, M.; et al. North American tree migration paced by climate in the West, lagging in the East. Proc. Natl. Acad. Sci. USA 2022, 119, e2116691118. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Sharma, S.; Woodall, C.W.; Clark, J.S. Niche Shifts From Trees to Fecundity to Recruitment That Determine Species Response to Climate Change. Front. Ecol. Evol. 2021, 9, 719141. [Google Scholar] [CrossRef]
- Lenarz, M.S.; Nelson, M.E.; Schrage, M.W.; Edwards, A.J. Temperature Mediated Moose Survival in Northeastern Minnesota. J. Wildl. Manag. 2009, 73, 503–510. [Google Scholar] [CrossRef]
- Pérez-Girón, J.C.; Alvarez-Alvarez, P.; Ballesteros, F.; López-Bao, J.V. Potential impacts of climate change on wild cherry distribution and associated consequences on brown bears. Biol. Conserv. 2024, 289, 110390. [Google Scholar] [CrossRef]
- Gábor, L.; Jetz, W.; Zarzo-Arias, A.; Winner, K.; Yanco, S.; Pinkert, S.; Marsh, C.J.; Rogan, M.S.; Mäkinen, J.; Rocchini, D.; et al. Species distribution models affected by positional uncertainty in species occurrences can still be ecologically interpretable. Ecography 2023, 2023, e06358. [Google Scholar] [CrossRef]
- Wang, C.Y.; Xu, Y.W.; Gu, H.F.; Luo, Z.H.; Luo, Z.H.; Su, R.G. Potential geographical distribution of harmful algal blooms caused by the toxic dinoflagellate Karenia mikimotoi in the China Sea. Sci. Total Environ. 2024, 906, 167741. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent:: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Liu, T. Population Ecology of Natural Japanese Yew. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2007. [Google Scholar]
- Chen, J. Study on the Suitable Distribution Area of Taxus cuspidata. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Cheng, B.B.; Zheng, Y.Q.; Sun, Q.W. Genetic diversity and population structure of Taxus cuspidata in the Changbai Mountains assessed by chloroplast DNA sequences and microsatellite markers. Biochem. Syst. Ecol. 2015, 63, 157–164. [Google Scholar] [CrossRef]
- Su, J. The Population Dynamics of Taxus cuspidata: Evidence FromCytoplasmic and Nuclear Genome Fragements. Master’s Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Feng, J. The Interaction between Wapiti (Cervus elaphus), Sika Deer (Cervus nippon), Roe Deer (Capreolus pygargus) and Japanese Yew (Taxus cuspidata) in the Southern of Laoyaling Mountains, Northeastern China. Master’s Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Zhu, M.; Yang, M.; Zhang, W.; Zhang, M. Wintering Diet of Red and Roe Deer in Heilongjiang Muling Japnaese Yew National Reserve. J. North-East For. Univ. 2019, 47, 100–104. [Google Scholar]
- Yang, L. The Study on Community Characteristics in Relation with Influence Factors of Taxus cuspidata. Master’s Thesis, Beijing Forestry University, Beijing, China, 2018. [Google Scholar]
- Diao, Y.; Liu, Y.; Liu, Y.; Tian, S. Population structure characteristics of Taxus cuspidata. Sci. Sin. Vitae 2020, 50, 391–397. [Google Scholar]
- Jian-Guo, W.U.; Jia-Jia, L. Potential Effects of Climate Change on the Distribution of Dove Trees (Davidia Involucrata Baill) in China. Res. Environ. Sci. 2009, 22, 1371–1381. [Google Scholar]
- Niu, Y.; Zhang, Z.; Liu, Y.; Qiu, Y.; Wang, D.; Zhou, S. Mammal Diversity and Prey Resource of Amur Tigerin Heilongjiang Muling Japanese Yew National Nature Reserve. Chin. J. Wildl. 2021, 042, 355–362. [Google Scholar]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Liu, C.R.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Han, M.; Bai, S.; Sun, S.; Yan, J.; Zhang, C.; Zhang, C.; Zhang, J.; You, M.; Li, D.; Yan, X. Simulation of Elymus sibiricus L.Distribution in Tibetan Plateau Based on MaxEnt Model. Acta Agrestia Sin. 2021, 29, 374–382. [Google Scholar]
- Mahatara, D.; Acharya, A.K.; Dhakal, B.P.; Sharma, D.K.; Ulak, S.; Paudel, P. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fenn. 2021, 55, 10441. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Li, B.X.; Xu, H.; Liang, Z.R.; Lu, X.P.; Yang, L.; Wang, W.J. Potential distribution of two economic laver species-Neoporphyra haitanensis and Neopyropia yezoensis under climate change based on MaxEnt prediction and phylogeographic profiling. Ecol. Indic. 2023, 150, 110219. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Wu, J.; Lv, J.; Ai, L. The impacts of climate change on the biodiversity: Vulnerability and Adaptation. Ecol. Environ. Sci. 2009, 18, 693–703. [Google Scholar]
- Bergquist, J.; Bergström, R.; Zakharenka, A. Responses of young Norway spruce (Picea abies) to winter browsing by roe deer (Capreolus capreolus): Effects on height growth and stem morphology. Scand. J. For. Res. 2003, 18, 368–376. [Google Scholar] [CrossRef]
- Wan, J.; Wang, C.; Han, S.; Yu, J. The Planning of Priority Protection Area for Taxus cuspidata under Climate Change. J. Shenyang Agric. Univ. 2014, 45, 28–32. [Google Scholar]
- Tian, X.; Chen, H.; Zhong, L.; Huang, H.; Liu, X.; Zhang, Z.; Yang, M.; Zhou, S. Population size and habitat suitability evaluation of wapiti (Cervus canadensis xanthopygus) in Muling forest area, southern Laoyeling, Heilongjiang Province, China. Acta Ecol. Sin. 2022, 42, 5980–5989. [Google Scholar]
- Zhou, S.; Liang, Z.; Zhang, Z.; Jin, G.; Na, C. A Study of Prey Source on Amur Tiger and Amur Leopard in Laoyeling Amur Tiger National Nature Reserve of Heilongjiang Province. For. Sci. Technol. 2018, 43, 4–6. [Google Scholar]
- Yang, S.; Wang, H.; Jing, W.; Wang, Q.; Yan, H.; Qiu, X.; Jian, H. Simulation of climate change effect on the global distribution of Rosa multiflora. Chin. J. Appl. Ecol. 2024, 35, 1897–1906. [Google Scholar]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; Mcdonald, R.E.; Mclaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar]
- Ozturk, T.; Ceber, Z.P.; Türkes, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Yan, H.Y.; Feng, L.; Zhao, Y.F.; Feng, L.; Wu, D.; Zhu, C.P. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Glob. Ecol. Conserv. 2020, 21, e00856. [Google Scholar] [CrossRef]
Variable | Description | Unit | Source |
---|---|---|---|
Forest density | Forest coverage density | % | Landsat 8 |
Altitude | Altitude | m | DEM |
Aspect | Aspect | Degrees | DEM |
Slope | Slope | % | DEM |
Bio2 | Mean of monthly (max temp–min temp) | °C | WorldClim |
Bio3 | Isothermality | — | WorldClim |
Bio4 | Temperature Seasonality | — | WorldClim |
Bio12 | Annual Precipitation | mm | WorldClim |
Bio16 | Precipitation of Wettest Quarter | mm | WorldClim |
Bio17 | Precipitation of Driest Quarter | mm | WorldClim |
Wapiti feeding pressure | Wapiti feeding pressure | — | Fieldwork |
Siberian roe deer feeding pressure | Siberian roe deer feeding pressure | — | Fieldwork |
Habitat Type | Scenario: SSP2-4.5 | Scenario: SSP5-8.5 | ||
---|---|---|---|---|
2041–2060 | 2081–2100 | 2041–2060 | 2081–2100 | |
Unsuitable | 340.54 (80.8%) | 346.76 (88.29%) | 336.46 (75.88%) | 344.43 (85.48%) |
Suitable | 15.94 (19.2%) | 9.72 (11.71%) | 20.02 (24.12%) | 12.05 (14.52%) |
Species | Scenario: SSP2-4.5 | Scenario: SSP5-8.5 | ||||||
---|---|---|---|---|---|---|---|---|
2041–2060 | 2081–2100 | 2041–2060 | 2081–2100 | |||||
Wapiti | Bio17 | 45.6 | Bio17 | 47.2 | Bio17 | 47.2 | Bio17 | 42.4 |
Bio12 | 32.5 | Bio12 | 28.6 | Aspect | 14.2 | Bio12 | 29.1 | |
Bio4 | 10.5 | Bio4 | 9.3 | Bio12 | 13.5 | Aspect | 11.9 | |
Siberian roe deer | Bio17 | 29.8 | Bio17 | 40.5 | Bio17 | 53 | Bio17 | 39.6 |
Bio12 | 29.7 | Bio12 | 37.8 | Altitude | 14.8 | Bio12 | 22.2 | |
Aspect | 9.5 | Aspect | 6.9 | Bio4 | 12.5 | Aspect | 9.3 |
Species | Habitat Type | Scenario: SSP2-4.5 | Scenario: SSP5-8.5 | ||
---|---|---|---|---|---|
2041–2060 | 2081–2100 | 2041–2060 | 2081–2100 | ||
Wapiti | Suitable | 6.41 (40.24%) | 4.67 (48%) | 7.77 (38.83%) | 3.89 (32.26%) |
Unsuitable | 9.53 (59.76%) | 5.05 (52%) | 12.25 (61.17%) | 8.16 (67.74%) | |
Siberian roe deer | Suitable | 9.53 (59.76%) | 8.16 (84%) | 10.69 (53.4%) | 7.39 (61.29%) |
Unsuitable | 6.41 (40.24%) | 1.56 (16%) | 9.33 (46.6%) | 4.66 (38.71%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Feng, J.; Hong, Y.; Du, H.; Zhang, M.; Zhang, W. The Future Migration Direction of Deer and Japanese Yew Is Consistent Under Climate Change. Forests 2024, 15, 1983. https://doi.org/10.3390/f15111983
Wang X, Feng J, Hong Y, Du H, Zhang M, Zhang W. The Future Migration Direction of Deer and Japanese Yew Is Consistent Under Climate Change. Forests. 2024; 15(11):1983. https://doi.org/10.3390/f15111983
Chicago/Turabian StyleWang, Xianzhe, Jianan Feng, Yang Hong, Hairong Du, Minghai Zhang, and Weiqi Zhang. 2024. "The Future Migration Direction of Deer and Japanese Yew Is Consistent Under Climate Change" Forests 15, no. 11: 1983. https://doi.org/10.3390/f15111983
APA StyleWang, X., Feng, J., Hong, Y., Du, H., Zhang, M., & Zhang, W. (2024). The Future Migration Direction of Deer and Japanese Yew Is Consistent Under Climate Change. Forests, 15(11), 1983. https://doi.org/10.3390/f15111983