The Impact of Bamboo (Phyllostachys edulis) Expansion on the Water Use Patterns of Broadleaf Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection and Data Calculation
2.3.1. Water Use Sources
2.3.2. Water Use Efficiency
2.4. Statistical Analysis
3. Results
3.1. Soil Moisture Characteristics
3.2. Isotopic Signatures of the Potential Water Sources
3.3. Quantification of Water Use Sources for Bamboo and Broadleaf Trees
3.4. Water Use Efficiency for Bamboo and Broadleaf Trees
4. Discussion
4.1. Bamboo Expansion Increased Its Uptake Fractions of Surface and Shallow Soil Water and Improved Its WUE
4.2. Impacts of Bamboo Expansion on the Water Source of Broadleaf Trees Vary by Species
4.3. Bamboo Expansion Has No Significant Effect on the WUE of Broadleaf Trees
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datta, M.D.; Pandya, J.B.; Jadav, M.S.K.; Kumar, M. Plants Physiology and Metabolism: Fundamentals and Principles; AG Publishing House: Beijing, China, 2023. [Google Scholar]
- Hu, H.Y.; Zhu, L.; Li, H.X.; Xu, D.M.; Xie, Y.Z. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China. J. Arid Land 2021, 13, 109–122. [Google Scholar] [CrossRef]
- Jia, D.B.; Li, X.S.; Zhang, Y.Q.; Feng, Y.; Liu, D. Analysis on water use strategies of natural poplar in Hunshandake Sandy Land, China. Environ. Prog. Sustain. Energy 2021, 40, e13579. [Google Scholar] [CrossRef]
- Qiu, D.; Zhu, G.; Bhat, M.A.; Wang, L.; Liu, Y.; Sang, L.; Lin, X.; Zhang, W.; Sun, N. Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. J. Hydrol. 2023, 624, 129918. [Google Scholar] [CrossRef]
- Zeng, X.X.; Luo, H.T.; Lu, J.; Zhu, X.L.; He, Y.L.; Gong, C.; Ren, Z.; Huang, D.; Song, Q.; Yang, Q. The process of patchy expansion for bamboo (Phyllostachys edulis) at the bamboo-broadleaf forest interface: Spreading and filling in order. Forests 2024, 15, 438. [Google Scholar] [CrossRef]
- Li, D.L.; Wei, J.; Wu, J.Z.; Zhong, Y.D.; He, J.H.; Zhang, S.Q.; Yu, L.S. The Invasion of Moso Bamboo Forests into Diverse Types of Forests from 2010 to 2020 in China. Available online: https://ssrn.com/abstract=4653349 (accessed on 3 August 2024).
- Li, T.J.; Wang, M.L.; Cao, Y.; Xu, G.; Yang, Q.Q.; Ren, S.Y.; Hu, S.-L. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage. Chin. J. Plant Ecol. 2021, 45, 1365–1379. [Google Scholar] [CrossRef]
- Zhang, M.X.; Chen, S.L.; Jiang, H.; Cao, Q. The water transport profile of Phyllostachys edulis during the explosive growth phase of bamboo shoots. Glob. Ecol. Conserv. 2020, 24, e01251. [Google Scholar] [CrossRef]
- Dawson, T.E. Water sources of plants as determined from xylem-water isotopic composition: Perspectives on plant competition, distribution, and water relations. In Stable Isotopes and Plant Carbon-Water Relations; Academic Press: Cambridge, MA, USA, 1993; pp. 465–496. [Google Scholar]
- Gow, L.; Barrett, D.; O’grady, A.; Renzullo, L.; Phinn, S. Subsurface water-use strategies and physiological responses of subtropical eucalypt woodland vegetation under changing water-availability conditions. Agric. For. Meteorol. 2018, 248, 348–360. [Google Scholar] [CrossRef]
- He, X.F.; Hui, D.F.; Liu, H.; Wang, F.M.; Yao, K.C.; Lu, H.F.; Ren, H.; Wang, J. Responses of plant water uptake sources to altered precipitation patterns in a tropical secondary forest. Agric. For. Meteorol. 2024, 355, 110138. [Google Scholar] [CrossRef]
- McAusland, L.; Vialet Chabrand, S.; Davey, P.; Baker, N.R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytol. 2016, 211, 1209–1220. [Google Scholar] [CrossRef]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Yang, H.B.; An, S.Q.; Sun, O.J.; Shi, Z.M.; She, X.S.; Sun, Q.Y.; Liu, S. Seasonal variation and correlation with environmental factors of photosynthesis and water use efficiency of Juglans regia and Ziziphus jujuba. J. Integr. Plant Biol. 2008, 50, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Liu, L.Z.; Shen, Q.; Yang, J.H.; Han, X.Y.; Tian, F.; Wu, J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Lawson, T.; Vialet-Chabrand, S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dong, M. Clonal plant. In Clonal Plant Ecology; Science Press: Beijing, China, 2011; pp. 5–9. [Google Scholar]
- Liu, J.; Yang, Q.P.; Song, Q.N.; Kun, Y.D.; Yao, Y.G.; Qi, H.; Shi, Y. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broadleaved forest. Chin. J. Plant Ecol. 2013, 37, 230–238. [Google Scholar] [CrossRef]
- Ellsworth, P.Z.; Sternberg, L.S. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 2015, 8, 538–551. [Google Scholar] [CrossRef]
- Su, P.Y.; Zhang, M.J.; Qu, D.Y.; Wang, J.X.; Zhang, Y.; Yao, X.Y.; Xiao, H. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water 2020, 12, 2791. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.J.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef]
- Lévesque, M.; Siegwolf, R.; Saurer, M.; Eilmann, B.; Rigling, A. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol. 2014, 203, 94–109. [Google Scholar] [CrossRef]
- Urrutia-Jalabert, R.; Malhi, Y.; Barichivich, J.; Lara, A.; Delgado-Huertas, A.; Rodríguez, C.G.; Cuq, E. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J. Geophys. Res. Biogeosciences 2015, 120, 2505–2524. [Google Scholar] [CrossRef]
- Zhao, J.X.; Xu, T.R.; Xiao, J.F.; Liu, S.M.; Mao, K.B.; Song, L.S.; Yao, Y.; He, X.; Feng, H. Responses of water use efficiency to drought in southwest China. Remote Sens. 2020, 12, 199. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Driscoll, A.W.; Szejner, P.; Anderegg, W.R.; Ehleringer, J.R. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc. Natl. Acad. Sci. USA 2021, 118, e2118052118. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.J.; Zhao, Y.; Seki, K.; Wang, L. Changes in water-use strategies and soil water status of degraded poplar plantations in water-limited areas. Agric. Water Manag. 2024, 296, 108799. [Google Scholar] [CrossRef]
- Li, H.; Zhou, H. Application characteristics and mechanism of stable isotope techniques in the study of eco-hydrological progresses in arid regions. Arid Land Geogr. 2006, 29, 810–816. [Google Scholar]
- Knight, J.D.; Livingston, N.J.; Van-Kessel, C. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions. Plant Cell Environ. 1994, 17, 173–179. [Google Scholar] [CrossRef]
- Yang, D.D.; Liu, H.S.; Yu, X.L.; Li, Z.Y.; He, Z.; Lu, H.J.; Chen, H.M.; Tan, T.H. Investigation and analysis of the mammal resources in Qiyunshan Nature Reserve, Jiangxi province. J. Cent. South Univ. For. Technol. 2009, 29, 45–50. [Google Scholar]
- Huang, X.F.; Tu, Y.G.; Chen, J.W.; Shan, J.H.; Wang, Z.R.; Zhang, T.; Sun, Z.Y.; Lu, H.J.; Huang, S.L. Investigation and diversity of birds in winter in Qiyunshan Nature Reserve, Jiangxi Province. Chin. J. Zool. 2008, 43, 86–94. [Google Scholar]
- Chen, Y.L.; Lin, Y.L.; Su, M.S.; Zhang, L.P.; Zhang, Y.; Chen, H.M. Flora of Macrofungal in Qiyun Mountain National Nature Reserve of Jiangxi. J. Fungal Res. 2019, 17, 26–34. [Google Scholar]
- Gregg, J.W.; Phillips, D.L. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 2003, 136, 261–269. [Google Scholar]
- Huang, Z.Q.; Ran, S.S.; Fu, Y.R.; Wan, X.H.; Song, X.; Chen, Y.X.; Yu, Z. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. J. Ecol. 2022, 110, 2179–2189. [Google Scholar] [CrossRef]
- Feng, X. Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. Oecologia 1998, 117, 19–25. [Google Scholar] [CrossRef]
- Luo, Z.D.; Nie, Y.P.; Chen, H.S.; Guan, H.D.; Zhang, X.P.; Wang, K.L. Water age dynamics in plant transpiration: The effects of climate patterns and rooting depth. Water Resour. Res. 2023, 59, e2022WR033566. [Google Scholar] [CrossRef]
- Amin, A.; Zuecco, G.; Geris, J.; Schwendenmann, L.; McDonnell, J.J.; Borga, M.; Penna, D. Depth distribution of soil water sourced by plants at the global scale: A new direct inference approach. Ecohydrology 2020, 13, e2177. [Google Scholar] [CrossRef]
- Schwendenmann, L.; Pendall, E.; Sanchez-Bragado, R.; Kunert, N.; Hölscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementarity. Ecohydrology 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Chen, G.; Tang, X.L.; Cai, C.J.; Fan, S.H.; Sun, L.Z.; Yang, F.; Liu, H. Air moisture and soil texture are crucial for the water dynamics of riparian bamboo in a subtropical region. Plant Soil 2020, 455, 381–395. [Google Scholar] [CrossRef]
- Chen, S.P.; Bai, Y.F.; Han, X.G. Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin, Nei Mongol. J. Integr. Plant Biol. 2002, 44, 1484. [Google Scholar]
- Grotkopp, E.; Rejmánek, M. High seedling relative growth rate and specific leaf area are traits of invasive species: Phylogenetically independent contrasts of woody angiosperms. Am. J. Bot. 2007, 94, 526–532. [Google Scholar] [CrossRef]
- Funk, J.L.; Vitousek, P.M. Resource-use efficiency and plant invasion in low-resource systems. Nature 2007, 446, 1079–1081. [Google Scholar] [CrossRef]
- Shen, X.Y.; Peng, S.L.; Chen, B.M.; Pang, J.X.; Chen, L.Y.; Xu, H.M.; Hou, Y. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol. Invasions 2011, 13, 869–881. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ohashi, M.; Fujihara, M.; Kitayama, K.; Onoda, Y. Rhizomes play significant roles in biomass accumulation, production and carbon turnover in a stand of the tall bamboo Phyllostachys edulis. J. For. Res. 2023, 28, 42–50. [Google Scholar] [CrossRef]
- Goldsmith, G.R.; Muñoz-Villers, L.E.; Holwerda, F.; McDonnell, J.J.; Asbjornsen, H.; Dawson, T.E. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology 2012, 5, 779–790. [Google Scholar] [CrossRef]
- Wang, X.; Deng, W.P.; Liu, Z.Q.; Liu, Z.H.; Qiu, G.F.; Li, W.L. Long-term water use characteristics and patterns of typical tree species in seasonal drought regions. Chin. J. Appl. Ecol. 2021, 32, 1943–1950. [Google Scholar]
- Bai, K.D.; Jiang, D.B.; Wan, X.C. Photosynthesis-nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’ er Mountain, Guangxi. Acta Ecol. Sin. 2013, 33, 4930–4938. [Google Scholar]
- Shinohara, Y.; Misumi, Y.; Kubota, T.; Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. Catena 2019, 172, 451–460. [Google Scholar] [CrossRef]
- Xu, L.X.; Jiang, H.; Zhang, M.X.; Song, X.Z.; Cheng, X.F.; Shu, H.Y. Net photosynthesis and its affecting factors of bamboo forest in Anji county. Acta Agric. Univ. Jiangxiensis 2017, 39, 928–937. [Google Scholar]
- Shi, J.M.; Guo, O.R.; Yang, G.Y. Study on the transpiration dynamic variation of Phyllostachys edulis. For. Res. 2007, 20, 101–104. [Google Scholar]
- Aranda, I.; Pardos, M.; Puértolas, J.; Jiménez, M.D.; Pardos, J.A. Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol. 2007, 27, 671–677. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, G.M.; Bai, S.B. Light intensity changes on Cunninghamia lanceolata in mixed stands with different concentrations of Phyllostachys pubescens. J. Zhejiang AF Univ. 2011, 28, 550–554. [Google Scholar]
- Gong, C.; Zeng, X.X.; Zhu, X.L.; Huang, W.H.; Compson, G.Z.; Ren, Z.W.; Ran, H.; Song, Q.; Yang, Q.; Huang, D.; et al. Bamboo expansion promotes radial growth of surviving trees in a broadleaf forest. Front. Plant Sci. 2023, 14, 1242364. [Google Scholar] [CrossRef]
- Wang, G.H. Differences in leaf δ13C among four dominant species in a secondary succession sere on the Loess Plateau of China. Photosynthetica 2003, 41, 525–531. [Google Scholar] [CrossRef]
- Aranda, I.; Aldea, A.; Minguez, M.P.; Simón, J.P.; Jiménez, M.; Carrión, J.A.P. Efecto de la luz y la sequía sobre la anatomía foliar de plantas de alcornoque (“Quercus suber” L.). Cuad. De La Soc. Española De Cienc. For. 2004, 20, 117–121. [Google Scholar]
- Niinemets, U. Components of leaf dry mass per area-thickness and density-alter photosynthetic capacity in reverse directions in woody plants. New Phytol. 1999, 144, 35–47. [Google Scholar] [CrossRef]
- Hanba, Y.; Miyazawa, S.I.; Terashima, I. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Funct. Ecol. 1999, 13, 632–639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Gong, C.; Lu, J.; Huang, G.; Fu, C.; Yu, Y.; Ran, H.; Song, Q.; Huang, D.; Liu, J.; et al. The Impact of Bamboo (Phyllostachys edulis) Expansion on the Water Use Patterns of Broadleaf Trees. Forests 2024, 15, 1984. https://doi.org/10.3390/f15111984
Zeng X, Gong C, Lu J, Huang G, Fu C, Yu Y, Ran H, Song Q, Huang D, Liu J, et al. The Impact of Bamboo (Phyllostachys edulis) Expansion on the Water Use Patterns of Broadleaf Trees. Forests. 2024; 15(11):1984. https://doi.org/10.3390/f15111984
Chicago/Turabian StyleZeng, Xiaoxia, Chao Gong, Jian Lu, Guohai Huang, Chengjie Fu, Yanhua Yu, Huan Ran, Qingni Song, Dongmei Huang, Jun Liu, and et al. 2024. "The Impact of Bamboo (Phyllostachys edulis) Expansion on the Water Use Patterns of Broadleaf Trees" Forests 15, no. 11: 1984. https://doi.org/10.3390/f15111984
APA StyleZeng, X., Gong, C., Lu, J., Huang, G., Fu, C., Yu, Y., Ran, H., Song, Q., Huang, D., Liu, J., & Yang, Q. (2024). The Impact of Bamboo (Phyllostachys edulis) Expansion on the Water Use Patterns of Broadleaf Trees. Forests, 15(11), 1984. https://doi.org/10.3390/f15111984