Road Landscape Design: Harmonious Relationship Between Ecology and Aesthetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Overview of the Research Area
2.3. Measurement of Ecological Values
2.4. Aesthetic Evaluation Sample Points
2.5. Aesthetic Evaluation Methods
2.6. Ecological Data on Plant Sample Points
2.7. Data Processing
2.7.1. Standardization of Aesthetics
2.7.2. Scenic Beauty Index (SBI)
2.7.3. Data Statistics and Analyses
2.7.4. Establishment of Regression Model
3. Results
3.1. Plant Ecological Benefits
3.1.1. Survey of Road Green Spaces
3.1.2. Carbon Sequestration and Cooling of Plants
3.2. Ecological Values
3.3. SBE Standardization
3.4. Landscape Characteristic Values
3.5. SBE and Feature Evaluation Correlation
3.6. SBI Values
3.7. SBI and Ecological Values
4. Discussion
4.1. Plant Ecology and Aesthetic Assessment
4.1.1. Construction of Highly Eco-Efficient Landscapes
4.1.2. Exploration of Aesthetic Value
4.2. Interaction Between SBI and Ecological Benefits
4.3. Further Improvements of Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Picture | Sample Plants | Life Form | Position | Remark | |
---|---|---|---|---|---|
Fig. G-R | Poa annua | Grass | Greenbelt of roadside | Single-layer grassland landscape | |
Fig. S-Z | Ligustrum sinense Photinia fraseri | Shrub | Traffic separation green zone | Conventional split belt landscape | |
Fig. S-R | Ligustrum sinense | Shrub | Greenbelt of roadside | Modeling shrubs | |
Fig. TS-Z | Photinia fraseri Ligustrum sinense Ligustrum vicaryi | Tree Shrub | Traffic separation green zone | The upper plants are small trees | |
Fig. TS-A | Chinese scholartree Photinia fraseri Sabina chinensis | Tree Shrub | Avenue greenbelt | The upper plants are large | |
Fig. TG-R | Pinus bungeana Ophiopogon japonicus Aesculus mesophyll | Tree Grass | Greenbelt of roadside | The main landscape is evergreen plants | |
Fig. TG-A | Aesculus mesophyll Ophiopogon japonicus | Tree Grass | Avenue greenbelt | Tree pool landscape | |
Fig. SG-A1 | Photinia fraseri Ligustrum vicaryi Sabina chinensis Poa annua | Shrub Grass | Greenbelt of roadside | No upper plant; rich shrub species | |
Fig. SG-A2 | Photinia fraseri Poa annua | Tree Grass | Greenbelt of roadside | No upper plant; shrub species single | |
Fig. TSG-A | Aesculus mesophyll Eriobotrya japonica Pinus bungeana Photinia fraseri Ligustrum vicaryi Poa annua | Tree Shrub Grass | Avenue greenbelt | Rich levels; the forest edge line is changeable | |
Fig. TSG-R1 | Prunus serrulata Pinus bungeana Photinia fraseri Ophiopogon japonicus | Tree Shrub Grass | Greenbelt of roadside | Tree front; group shrubs | |
Fig. TSG-R2 | Prunus cerasifera Ligustrum lucidum Ligustrum vicaryi Poa annua | Tree Shrub Grass | Greenbelt of roadside | Tree postposition; banded shrubs | |
Fig. TSG-R3 | Aesculus mesophyll Prunus cerasifera Ginkgo biloba Koelreuteria paniculata Poa annua | Tree Shrub Grass | Greenbelt of roadside | Multilayer grassland landscape | |
Fig. S-Z2 | Ligustrum sinense Photinia fraseri | Shrub | Traffic separation green zone | Different shooting angles from Fig. S-Z cluster for analyzing the aesthetic stability of the participants |
Appendix B
Photo | Evaluator Number | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
S-Z | 4 | 3 | 3 | 3 | 3 | 4 | 2 | 5 | 3 | 4 | 3 | 2 | 3 | 4 | 3 | 3 | 3 | 2 | 4 | 2 |
G-Z2 | 4 | 3 | 3 | 3 | 3 | 4 | 2 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 2 |
Different trials | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
Appendix C. Principles of Landscape Feature Assessment
Appendix D. Assimilation Method Formula
Appendix E. Basic Analysis of Questionnaire
- 1.
- Reliability and Validity Analysis: Reliability and validity analysis are essential means to test the reliability of questionnaire data. A reliability coefficient of Cronbach’s α greater than 0.8 indicates high reliability, while less than 0.6 indicates low reliability. A valid KMO value of 0.6 or above is considered valid data; if the KMO value is higher than 0.8, then the validity is higher. The reliability coefficient of the SBE questionnaire data is 0.869, higher than 0.8, indicating high data reliability; the KMO value is 0.890, higher than 0.8, with a significant level of 0.000, indicating that the questionnaire is suitable for factor analysis and has a good validity structure (Table A3).
Reliability Analysis | ||
Sample points | Term numbers | Cronbach α |
214 | 16 | 0.869 |
Validity Analysis | ||
Free degree | KMO | Saliency |
120 | 0.890 | 0.000 |
- 2.
- Analysis of the Evaluation Population Structure: As mentioned above, 201 valid questionnaires were used for SBE analysis, obtaining statistical information about the evaluation population (Figure A1).
- (1)
- Male evaluators account for 48.3% of the total survey population, while female evaluators account for 51.7%;
- (2)
- The professional group is composed of students and practitioners from landscape-related majors, and the non-professional group is composed of randomly selected members of the public. The valid questionnaires from the professional group account for 49.8% of the total survey population; the non-professional group accounts for 50.2%;
- (3)
- The majority of the evaluators are concentrated in the 18- to 25-year-old age group, which accounts for 37.3% of the total survey population; there are fewer people under 18 and over 50, accounting for only 8% of the total population.
- 3.
- Different Group Landscape Evaluations: Based on the professional and non-professional group SBE standard values, a scatter plot of the correlation coefficient was drawn, and the results show a strong aesthetic consistency between the two groups (Figure A2).
Appendix F. Model Program Execution Process
Algorithm A1 Inear regression modelling algorithms |
x1 = [−0.611 −0.246 −0.570 −0.120 0.698 −0.282 3.094 −0.553 −0.536 −0.222 0.203 −0.282 −0.569]; x2 = [−0.634 −0.421 −0.608 −0.216 1.865 −0.342 2.508 −0.567 −0.588 −0.225 0.012 −0.175 −0.608]; y = [−0.514 0.066 −0.397 0.061 0.443 −0.112 0.259 −0.153 −0.142 0.134 0.106 0.416 −0.166]; x = [x1′ x2′]; stool(x,y,‘pure quadratic) beta, rmse % beta = 0.3311 −0.6531 1.3598 0.2404 −0.5989 % rmse = 0.1578 Select the method of transforming the model into multiple linear regression for verification; % x3 = x1^2 x4 = x2^2 X = [ones(13,1) x1′ x2′ (x1.^2)′ (x2.^2)′]; [b, bint, r, rint, stats] = regress(y, X); b; stats; % b = 0.3311 −0.6531 1.3598 0.2404 −0.5989 % stats = 0.7964 7.8252 0.0072 0.0249 |
References
- Daniels, B.; Zaunbrecher, B.S.; Paas, B.; Ottermanns, R.; Ziefle, M.; Roß-Nickoll, M. Assessment of urban green space structures and their quality from a multidimensional perspective. Sci. Total Environ. 2018, 615, 1364–1378. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.J.; Helmus, M.R.; Behm, J.E. Green infrastructure space and traits (GIST) model: Integrating green infrastructure spatial placement and plant traits to maximize multifunctionality. Urban For. Urban Green. 2020, 49, 126635. [Google Scholar] [CrossRef]
- Lovell, S.T.; Johnston, D.M. Designing landscapes for performance based on emerging principles in landscape ecology. Ecol. Soc. 2009, 14, 44. [Google Scholar] [CrossRef]
- Kisvarga, S.; Horotan, K.; Wani, M.A.; Orloci, L. Plant responses to global climate change and urbanization: Implications for sustainable urban landscapes. Horticulture 2023, 9, 1051. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, D.; Jiang, X.; Zhang, S.; Lin, Z. Assessment of urban forest ecological benefit based on the i-tree eco Model—A case study of Changchun central city. Forests 2023, 14, 1304. [Google Scholar] [CrossRef]
- Shao, F.; Wang, L.; Sun, F.; Li, G.; Yu, L.; Wang, Y.; Zeng, X.; Yan, H.; Dong, L.; Bao, Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef]
- Yofianti, D.; Usman, K. Relationship of plant types to noise pollution absorption level to improve the quality of the road environment. IOP Conf. Ser. Earth Environ. Sci. 2021, 926, 12074. [Google Scholar] [CrossRef]
- Pierskalla, C.D.; Deng, J.; Siniscalchi, J.M. Examining the product and process of scenic beauty evaluations using moment-to-moment data and GIS: The case of Savannah, GA. Urban For. Urban Green. 2016, 19, 212–222. [Google Scholar] [CrossRef]
- Dang, N.; Zhang, H.; Salam MM, A.; Li, H.; Chen, G. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes. Environ. Pollut. 2022, 306, 119472. [Google Scholar] [CrossRef]
- He, C.; Zhou, L.; Yao, Y.; Ma, W.; Kinney, P.L. Cooling effect of urban trees and its spatiotemporal characteristics: A comparative study. Build. Environ. 2021, 204, 108103. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Grădinaru, S.R.; Pierri Daunt, A.B.; Imhof, C.S.; Fan, P. Landscape ecological concepts in planning: Review of recent developments. Landsc. Ecol. 2021, 36, 2329–2345. [Google Scholar] [CrossRef] [PubMed]
- Eikaas, I.; Roussel, H.; Thorén, A.H.; Dramstad, W.E. Applying landscape ecology in local planning, some experiences. Int. J. Environ. Res. Public Health 2023, 20, 3410. [Google Scholar] [CrossRef] [PubMed]
- Brady, E.; Prior, J.; Hoyle, H. Environmental aesthetics: A synthetic review. People Nat. 2020, 2, 254–266. [Google Scholar] [CrossRef]
- Jahani, A.; Saffariha, M. Aesthetic preference and mental restoration prediction in urban parks: An application of environmental modeling approach. Urban For. Urban Green. 2020, 54, 126775. [Google Scholar] [CrossRef]
- Saha, D.; Das, D.; Dasgupta, R.; Patel, P.P. Application of ecological and aesthetic parameters for riparian quality assessment of a small tropical river in eastern India. Ecol. Indic. 2020, 117, 106627. [Google Scholar] [CrossRef]
- Fu, W. Enhancing university campus landscape design through regression analysis: Integrating ecological environmental protection. Soft Comput. 2023, 27, 16309–16329. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.; Jin, Y.; Wu, W. Correlations among AHP-based scenic beauty estimation and water quality indicators of typical urban constructed WQT wetland park landscaping. Aqua 2023, 72, 2017–2034. [Google Scholar] [CrossRef]
- Tribot, A.; Deter, J.; Mouquet, N. Integrating the aesthetic value of landscapes and biological diversity. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180971. [Google Scholar] [CrossRef]
- Dang, H.; Li, J. The integration of urban streetscapes provides the possibility to fully quantify the ecological landscape of urban green spaces: A case study of Xi’an city. Ecol. Indic. 2021, 133, 108388. [Google Scholar] [CrossRef]
- Wu, S.; Yao, X.; Qu, Y.; Chen, Y. Ecological Benefits and Plant Landscape Creation in Urban Parks: A Study of Nanhu Park, Hefei, China. Sustainability 2023, 15, 16553. [Google Scholar] [CrossRef]
- Polat, A.T.; Akay, A. Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban For. Urban Green. 2015, 14, 573–582. [Google Scholar] [CrossRef]
- Long, K.; Wang, N.; Lin, Z. Assessing scenic beauty of hilly and mountain villages: An approach based on landscape indicators. Ecol. Indic. 2023, 154, 110538. [Google Scholar] [CrossRef]
- Jin, W.; Miao, W. How the ecological structure affects the aesthetic atmosphere of the landscape: Evaluation of the landscape beauty of Xingqing Palace Park in Xi’an. PLoS ONE 2024, 19, e0302855. [Google Scholar] [CrossRef] [PubMed]
- Daniel, T.C.; Boster, R.S. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method; Research Paper RM-167; USDA Forest Service Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1976.
- Zhang, N.; Zheng, X.; Wang, X. Assessment of the aesthetic quality of urban landscapes by integrating objective and subjective factors: A case study for riparian landscapes. Front. Ecol. Evol. 2022, 9, 735905. [Google Scholar] [CrossRef]
- Terkenli, T.S.; Gkoltsiou, A.; Kavroudakis, D. The interplay of objectivity and subjectivity in landscape character assessment: Qualitative and quantitative approaches and challenges. Land 2021, 10, 53. [Google Scholar] [CrossRef]
- Li, C.; Shen, S.; Ding, L. Evaluation of the winter landscape of the plant community of urban park green spaces based on the scenic beauty estimation method in Yangzhou, China. PLoS ONE 2020, 15, e0239849. [Google Scholar]
- Hu, X.; Zou, X.; Fan, H. Analysis of landscape influencing factors of urban waterfront greenways based on the scenic beauty estimation method, taking Tongjian Lake in Hangzhou as an example. Front. Earth Sci. 2023, 11, 1211775. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, E.; Guo, H.; Hu, C.; Zhang, Y.; Yan, D. Comprehensive evaluation of carbon sequestration potential of landscape tree species and its influencing factors analysis: Implications for urban green space management. Carbon Balance Manag. 2023, 18, 17. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Xiao, H. Carbon fixation and oxygen release capacity of typical riparian plants in Wuhan city and it is influencing factors. Sustainability 2024, 16, 1168. [Google Scholar] [CrossRef]
- Veinberga, M.; Zigmunde, D. Evaluating the Aesthetics and Ecology of Urban Green Spaces: A Case Study of Latvia. IOP Conf. Ser. Mater. Sci. Eng. 2019, 4, 042016. [Google Scholar] [CrossRef]
- Jia, J. Study Guide to Statistics; China Renmin University Press: Beijing, China, 2018; p. 195. [Google Scholar]
- Hesamian, G.; Akbari, M.G. Fuzzy quantile linear regression model adopted with a semi-parametric technique based on fuzzy predictors and fuzzy responses. Expert Syst. Appl. 2019, 118, 585–597. [Google Scholar] [CrossRef]
- Jayasuriya, B.R. Testing for polynomial regression using nonparametric regression techniques. J. Am. Stat. Assoc. 1996, 91, 1626–1631. [Google Scholar] [CrossRef]
- Huang, H.H.; He, Q. Nonlinear regression analysis. In International Encyclopedia of Education; Elsevier Science: Amsterdam, The Netherlands, 2010; pp. 339–346. [Google Scholar]
- CJJ/T75-2023; Urban Road Greening Design Standard. Ministry of Housing and Urban-Rural Development: Beijing, China, 2023.
- Yangling Demonstration Zone Housing and Urban-Rural Development Bureau. Implementation Measures for the Management of Urban Amenities and Environmental Sanitation in Yangling Demonstration Zone. 2024. Available online: https://zjj.yangling.gov.cn/zfxxgk/fdzdgknr/gkwj/1723975294491271169.html (accessed on 1 October 2024).
- Zhang, H.; Wang, C.; Yang, H.; Ma, Z. How do morphology factors affect urban heat island intensity? An approach of local climate zones in a fast-growing small city, Yangling, China. Ecol. Indic. 2024, 161, 111972. [Google Scholar] [CrossRef]
- Yue, M.; Gang, L. Study on road greening in the main urban area of Chongqing city based on plant diversity. J. Landsc. Res. 2017, 9, 102–104. [Google Scholar]
- Zhang, H.; Wang, L. Species diversity and carbon sequestration oxygen release capacity of dominant communities in the Hancang river basin, China. Sustainability 2022, 14, 5405. [Google Scholar] [CrossRef]
- Fang, Y.; Tian, J.; Namaiti, A.; Zhang, S.; Zeng, J.; Zhu, X. Visual aesthetic quality assessment of the streetscape from the perspective of landscape-perception coupling. Environ. Impact Assess. Rev. 2024, 106, 107535. [Google Scholar] [CrossRef]
- De la Sota, C.; Ruffato-Ferreira, V.J.; Ruiz-García, L.; Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 2019, 40, 145–151. [Google Scholar] [CrossRef]
- Teskey, R.; Wertin, T.; Bauweraerts, I.; Ameye, M.; Mcguire, M.A.; Steppe, K. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015, 38, 1699–1712. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, S.; Sahu, N.; Manika, N.; Singh, S.N.; Anto, S.; Kumar, R.; Husain, R.; Verma, A.K.; Pandey, N. Assessment of carbon sequestration potential of tropical tree species for urban forestry in India. Ecol. Eng. 2020, 181, 106692. [Google Scholar] [CrossRef]
- Pretzsch, H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 2014, 327, 251–264. [Google Scholar] [CrossRef]
- Li, H.; Shi, K.; Wang, Y.; Li, Y.; Feng, Y. RETRACTED ARTICLE: Research on scenic beauty estimation of plant landscape on the roof on SBE method. Arab. J. Geosci. 2021, 14, 882. [Google Scholar] [CrossRef]
- Mendes, P.; Goyette, J.; Cottet, M.; Cimon-Morin, J.; Pellerin, S.; Poulin, M. The aesthetic value of natural vegetation remnants, city parks and vacant lots: The role of ecosystem features and observer characteristics. Urban For. Urban Green. 2024, 98, 128388. [Google Scholar] [CrossRef]
- Tan, X.; Li, X.; Peng, Y. Aesthetic evaluation of plant landscape based on principal factor analysis and be in wetland park-a case study of Jinlong Lake wetland Park (China). J. Environ. Eng. Landsc. Manag. 2021, 29, 40–47. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.; Wang, L.; Zhang, J. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of urban green spaces: An ecological perspective on human benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Hands, D.E.; Brown, R.D. Enhancing visual preference of ecological rehabilitation sites. Landsc. Urban Plan. 2002, 58, 57–70. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, J.; Wu, G.; Hu, X. Exploring the interactive influence on landscape preference from multiple visual attributes: Openness, richness, order, and depth. Urban For. Urban Green. 2021, 65, 127363. [Google Scholar] [CrossRef]
- Teixeira, C.P.; Fernandes, C.O.; Ahern, J. Adaptive planting design and management framework for urban climate change adaptation and mitigation. Urban For. Urban Green. 2022, 70, 127548. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Biodiverse perennial meadows have aesthetic value and increase residents’ perceptions of site quality in urban green-space. Landsc. Urban Plan. 2017, 158, 105–118. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, X.; Zhang, J.; Wang, Y.; Wang, J.; Zhuang, J. Photosynthesis transpiration, the carbon fixation and oxygen release, and the cooling and humidificant capacity of typical tree species in Nanjing suburban. Sci. Silvae Sin. 2016, 52, 31–38. [Google Scholar]
- Gao, T.; Liang, H.; Chen, Y.; Qiu, L. Comparisons of landscape preferences through three different perceptual approaches. Int. J. Environ. Res. Public Health 2019, 16, 4754. [Google Scholar] [CrossRef] [PubMed]
Marking Scheme | 1 | 2 | 3 | 4 | 5 | Focus |
---|---|---|---|---|---|---|
Floristics | 1 | 2 | 3 | 4 | >4 | Richness of element variety |
Configuration structure | Grass/Shrub | Shrub/Grass | Tree/Grass | Tree/Shrub | Tree/Shrub/Grass | Lifestyle |
Canopy density | ≤20% | 20%–40% | 40%–60% | 60%–80% | ≥80% | Degree of ground coverage |
Growing status | Declining | Fair | Better | Healthy | Lush | Health status and growth dynamics |
Leaf characteristic | Unattractive | Less attractive | Average | Rather attractive | Very attractive | Physiological and morphological characteristics of leaves |
Vertical greening effect | None | Single | Rather single | Eather diverse | Diverse | Vertical spatial coverage and dispersion impacts |
Spatial characterization | Dispersed | Rather dispersed | Medium | Rather coordinated | Coordinated | Sample points openness and relative position of elements |
Environmental harmonization | Dysfunctional | Rather dysfunctional | Moderate | Rather harmonious | Harmonious | Interrelationships between sample points and their surroundings |
Species | Assimilation (mmol·m−2·s−1) | Carbon Sequestration (g·m−2·d−1) | Oxygen Release Quantity (g·m−2·d−1) | Transpiration (mol·m−2·d−1) | Cooling Values (°C) | Humidification Amount (g·m−2·d−1) |
---|---|---|---|---|---|---|
Sophora japonica Linn. | 100.18 | 8.10 | 5.89 | 100.18 | 0.80 | 4142.73 |
Ginkgo biloba L. | 102.16 | 12.55 | 9.13 | 26.63 | 0.32 | 1673.15 |
Ligustrum lucidum Ait. | 151.23 | 15.98 | 11.62 | 45.00 | 0.47 | 2431.29 |
Koelreuteria paniculata Laxm. | 248.06 | 23.05 | 16.76 | 64.93 | 0.60 | 3084.74 |
Eriobotrya japonica (Thunb.) Lindl. | 148.85 | 13.15 | 9.56 | 37.31 | 0.33 | 1685.17 |
Prunus persica Batsch. var. duplex Rehd | 160.06 | 7.59 | 5.52 | 59.95 | 0.28 | 1454.69 |
Prunus serrulata Lindl. | 174.15 | 18.70 | 13.60 | 59.10 | 0.63 | 3245.16 |
Aesculus chinensis Bunge | 90.91 | 8.66 | 6.30 | 33.37 | 0.31 | 1625.82 |
Prunus cerasifera Ehrhar f. | 130.36 | 14.81 | 10.78 | 86.58 | 0.97 | 5030.01 |
Pinus bungeana Zucc. ex Endl. | 103.77 | 11.12 | 8.09 | 66.78 | 0.71 | 3659.09 |
Average value of trees | 140.97 | 13.37 | 9.73 | 53.29 | 0.54 | 2803.19 |
Ligustrum × vicaryi Rehder | 173.81 | 19.66 | 14.30 | 90.58 | 1.01 | 5239.19 |
Berberis thunbergii cv. atropurpurea | 106.17 | 15.89 | 11.55 | 62.36 | 0.92 | 4772.18 |
Photinia × fraseri Dress | 244.10 | 31.47 | 22.89 | 65.81 | 0.84 | 4339.01 |
Ligustrum sinense Lour. | 168.95 | 20.65 | 15.02 | 100.88 | 1.22 | 6305.44 |
Sabina chinensis (L.) Ant. cv. Kaizuca | 111.33 | 18.82 | 13.69 | 86.13 | 1.43 | 7445.09 |
Average value of shrub | 160.87 | 21.30 | 15.49 | 81.15 | 1.08 | 5620.18 |
Poa annua L. | 92.11 | 3.54 | 2.57 | 85.64 | 0.32 | 1679.56 |
Ophiopogon japonicus (L. f.) Ker Gawl. | 89.51 | 9.60 | 6.98 | 44.05 | 0.47 | 2416.45 |
The average value of grass | 90.81 | 6.57 | 4.78 | 64.85 | 0.40 | 2048.00 |
Sample | Position | Green Area (m2) | Carbon Sequestration (g·m−2·d−1) | Cooling Values (°C) | ||||
---|---|---|---|---|---|---|---|---|
Total | Mean Value | Standardized | Total | Mean Value | Standardized | |||
G-R | Roadside | 91.000 | 322.140 | 3.540 | −0.611 | 29.120 | 0.320 | −0.634 |
S-Z | Dividing strip | 30.000 | 999.609 | 33.320 | −0.246 | 31.537 | 1.051 | −0.421 |
S-R | Roadside | 10.300 | 71.449 | 6.937 | −0.570 | 4.221 | 0.410 | −0.608 |
TS-Z | Dividing strip | 25.330 | 1104.198 | 43.593 | −0.120 | 44.233 | 1.746 | −0.216 |
TS-A | Street tree strip | 10.440 | 1151.665 | 110.313 | 0.698 | 92.633 | 8.873 | 1.865 |
TG-R | Roadside | 73.800 | 2241.063 | 30.367 | −0.282 | 97.699 | 1.324 | −0.342 |
TG-A | Street tree strip | 1.000 | 305.772 | 305.772 | 3.094 | 11.072 | 11.072 | 2.508 |
SG-A1 | Roadside | 63.000 | 520.801 | 8.267 | −0.553 | 34.876 | 0.554 | −0.567 |
SG-A2 | Roadside | 38.500 | 372.000 | 9.662 | −0.536 | 18.612 | 0.483 | −0.588 |
TSG-A | Street tree strip | 73.600 | 2595.580 | 35.266 | −0.222 | 126.593 | 1.720 | −0.225 |
TSG-R1 | Roadside | 63.000 | 4406.290 | 69.941 | 0.203 | 159.476 | 2.531 | 0.012 |
TSG-R2 | Roadside | 70.000 | 2125.738 | 30.368 | −0.282 | 132.208 | 1.889 | −0.175 |
TSG-R3 | Roadside | 107.300 | 747.480 | 6.966 | −0.569 | 44.351 | 0.413 | −0.608 |
Sample | Mean Value | Standardized Mean | Sample | Mean Value | Standardized Mean | Sample | Mean Value | Standardized Mean |
---|---|---|---|---|---|---|---|---|
G-R | 3.32 | −0.296 | TG-R | 3.49 | −0.138 | TSG-A | 3.76 | 0.341 |
S-Z | 3.53 | −0.022 | TG-A | 3.59 | 0.120 | TSG-R1 | 3.57 | 0.045 |
S-R | 3.47 | −0.187 | SG-A1 | 3.52 | −0.066 | TSG-R2 | 3.60 | 0.089 |
TS-Z | 3.57 | 0.083 | SG-A2 | 3.52 | −0.137 | TSG-R3 | 3.52 | −0.007 |
TS-A | 3.61 | 0.175 |
Sam. | Floristics | Config-Struct | Growing Status | Leaf Characteristic | Canopy Density | Vertical Greening Effect | Spatial Characterization | Environmental Harmonization | Mean Value | Standardized Mean |
---|---|---|---|---|---|---|---|---|---|---|
G-R | 1.000 | 1.000 | 3.450 | 2.660 | 1.000 | 1.580 | 3.113 | 3.321 | 2.141 | −0.732 |
S-Z | 2.000 | 1.000 | 3.792 | 3.620 | 3.420 | 3.190 | 3.755 | 3.943 | 3.090 | 0.155 |
S-R | 1.000 | 1.000 | 3.245 | 2.736 | 2.700 | 2.920 | 2.981 | 2.962 | 2.443 | −0.607 |
TS-Z | 3.000 | 4.000 | 3.717 | 3.580 | 4.620 | 3.280 | 3.604 | 3.566 | 3.671 | 0.038 |
TS-A | 3.000 | 4.000 | 4.230 | 3.491 | 5.000 | 4.210 | 4.250 | 4.280 | 4.058 | 0.711 |
TG-R | 3.000 | 3.000 | 3.620 | 3.450 | 4.460 | 3.660 | 3.264 | 3.300 | 3.469 | −0.086 |
TG-A | 2.000 | 3.000 | 4.132 | 3.910 | 5.000 | 3.620 | 4.080 | 3.755 | 3.687 | 0.398 |
SG-A1 | 4.000 | 2.000 | 3.321 | 3.400 | 2.530 | 3.320 | 3.019 | 3.434 | 3.128 | −0.239 |
SG-A2 | 2.000 | 2.000 | 3.400 | 3.870 | 2.300 | 3.300 | 3.415 | 3.430 | 2.964 | −0.147 |
TSG-A | 5.000 | 5.000 | 2.679 | 3.075 | 4.680 | 4.040 | 3.698 | 3.887 | 4.007 | −0.074 |
TSG-R1 | 4.000 | 5.000 | 3.906 | 3.750 | 5.000 | 3.830 | 3.434 | 3.509 | 4.054 | 0.166 |
TSG-R2 | 3.000 | 5.000 | 4.470 | 4.245 | 4.760 | 4.430 | 3.679 | 4.210 | 4.224 | 0.743 |
TSG-R3 | 3.000 | 5.000 | 3.810 | 2.887 | 1.000 | 3.720 | 2.358 | 3.547 | 3.165 | −0.326 |
Sample | SBI | Sample | SBI | Sample | SBI | Sample | SBI | Sample | SBI |
---|---|---|---|---|---|---|---|---|---|
G-R | −0.514 | TS-Z | 0.061 | TG-A | 0.259 | TSG-A | 0.134 | TSG-R2 | 0.416 |
S-Z | 0.066 | TS-A | 0.443 | SG-A1 | −0.153 | TSG-R1 | 0.106 | TSG-R3 | −0.166 |
S-R | −0.397 | TG-R | −0.112 | SG-A2 | −0.142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, M.; Mu, Y.; Han, Y. Road Landscape Design: Harmonious Relationship Between Ecology and Aesthetics. Forests 2024, 15, 2008. https://doi.org/10.3390/f15112008
Si M, Mu Y, Han Y. Road Landscape Design: Harmonious Relationship Between Ecology and Aesthetics. Forests. 2024; 15(11):2008. https://doi.org/10.3390/f15112008
Chicago/Turabian StyleSi, Mingqian, Yan Mu, and Youting Han. 2024. "Road Landscape Design: Harmonious Relationship Between Ecology and Aesthetics" Forests 15, no. 11: 2008. https://doi.org/10.3390/f15112008
APA StyleSi, M., Mu, Y., & Han, Y. (2024). Road Landscape Design: Harmonious Relationship Between Ecology and Aesthetics. Forests, 15(11), 2008. https://doi.org/10.3390/f15112008