Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Specimen Processing
2.4. Testing of Wood Properties
2.5. Data Statistics and Analysis Methods
3. Results
3.1. Comparison of Physical Properties Between Clear and Knotty Wood
3.2. Comparison of Mechanical Properties Between Clear and Knotty Wood
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mai, C.; Schmitt, U.; Niemz, P. A brief overview on the development of wood research. Holzforschung 2022, 76, 102–119. [Google Scholar] [CrossRef]
- Tao, C.; Gao, Z.; Cheng, B.; Chen, F.; Yu, C. Enhancing wood resource efficiency through spatial agglomeration: Insights from China’s wood-processing industry. Resour. Conserv. Recy. 2024, 203, 107453. [Google Scholar] [CrossRef]
- Bi, W.; Li, H.; Hui, D.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Ashraf, M. Effects of chemical modification and nanotechnology on wood properties. Nanotechnol. Rev. 2021, 10, 978–1008. [Google Scholar] [CrossRef]
- Risse, M.; Weber-Blaschke, G.; Richter, K. Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany. Resour. Conserv. Recy. 2017, 126, 141–152. [Google Scholar] [CrossRef]
- Kamal, K.; Qayyum, R.; Mathavan, S.; Zafar, T. Wood defects classification using laws texture energy measures and supervised learning approach. Adv. Eng. Inform. 2017, 34, 125–135. [Google Scholar] [CrossRef]
- Karaszewski, Z.; Bembenek, M.; Mederski, P.S.; Szczepanska-Alvarez, A.; Byczkowski, R.; Kozlowska, A.; Michnowicz, K.; Przytula, W.; Giefing, D.F. Identifying beech round wood quality-distributions and the influence of defects on grading. Drewno 2013, 56, 39–54. [Google Scholar] [CrossRef]
- Cherry, R.; Karunasena, W.; Manalo, A. Mechanical properties of low-stiffness out-of-grade hybrid pine—Effects of knots, resin and pith. Forests 2022, 13, 927. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zuo, Y.; Lu, J.; Yuan, G.; Wu, Y. Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression. J. Mater. Res. Technol. 2020, 9, 1043–1053. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Chhin, S.; Zhang, J. Effects of competition, age and climate on tree slenderness of Chinese fir plantations in southern China. Forest. Ecol. Manag. 2020, 458, 117815. [Google Scholar] [CrossRef]
- Wang, C.; Deng, X.; Xiang, W.; Yan, W. Calorific value variations in each component and biomass-based energy accumulation of red-heart Chinese fir plantations at different ages. Biomass-Bioenergy 2020, 134, 105467. [Google Scholar] [CrossRef]
- Farooq, T.H.; Yan, W.; Rashid, M.H.U.; Tigabu, M.; Gilani, M.M.; Zou, X.; Wu, P. Chinese fir (Cunninghamia lanceolata) a green gold of china with continues decline in its productivity over the successive rotations: A review. Appl. Ecol. Env. Res. 2019, 17, 11055–11067. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Zhang, Z.; Pan, H.; Lan, L.; Huang, R.; Deng, X.; Peng, Y. Effects of Exponential N Application on Soil Exchangeable Base Cations and the Growth and Nutrient Contents of Clonal Chinese Fir Seedlings. Plants 2023, 12, 851. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Peng, L.; Ma, D.; Wang, J.; Jiang, X.; Jiang, X.; Ma, X.; Lin, K. Effects of Thinning on Soil Microbial Necromass Carbon in Cunninghamia lanceolata Plantation. Sci. Silvae. Sin. 2023, 59, 41–52. [Google Scholar]
- Hu, Y.; Zhang, X.; Chen, H.; Jiang, Y.; Zhang, J. Effects of forest age and season on soil microbial communities in Chinese fir plantations. Microbiol. Spectr. 2024, 12, e04075-23. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Kang, W.; Zhao, Z.; He, J. Carbon fixed characteristics of plant of Chinese fir (Cunninghamia lanceolata) plantation at different growth stages in Huitong. Acta. Ecol. Sin. 2015, 35, 1187–1197. [Google Scholar]
- You, R.; Zhu, N.; Deng, X.; Wang, J.; Liu, F. Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China. Sci. Rep. 2021, 11, 4664. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, R.; Sun, H.; Liu, Y.; Lyu, J.; Zhao, R.; Liu, S. Wood mechanical properties and their correlation with microstructure in Chinese fir clones. IAWA J. 2021, 42, 497–506. [Google Scholar] [CrossRef]
- Chu, D.; Yao, T.; Zhou, L.; Yan, H.; Yu, M.; Liu, Y.; You, Y.; Bahmani, M.; Lu, C.; Ding, Z.; et al. Genetic variation analysis and comprehensive evaluation of wood property traits of 20-year-old Chinese fir clone. Eur. J. Forest. Res. 2022, 141, 59–69. [Google Scholar] [CrossRef]
- Yue, K.; Chen, Z.; Lu, W.; Liu, W.; Li, M.; Shao, Y.; Tang, L.; Wan, L. Evaluating the mechanical and fire-resistance properties of modified fast-growing Chinese fir timber with boric-phenol-formaldehyde resin. Constr. Build. Mater. 2017, 154, 956–962. [Google Scholar] [CrossRef]
- Weng, X.; Zhou, Y.; Fu, Z.; Gao, X.; Zhou, F.; Jiang, J. Effects of microwave pretreatment on drying of 50 mm-thickness Chinese fir lumber. J. Wood Sci. 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Butterfield, B.G.; Meylan, B.A. The Structure of Softwoods; Springer: Dordrecht, The Netherlands, 1980; pp. 28–47. [Google Scholar] [CrossRef]
- Mansfield, S.D.; Parish, R.; Ott, P.K.; Hart, J.F.; Goudie, J.W. Assessing the wood quality of interior spruce (Picea glauca× P. engelmannii): Variation in strength, relative density, microfibril angle, and fiber length. Holzforschung 2016, 70, 223–234. [Google Scholar] [CrossRef]
- Sheng, J.; Chen, J.; Liu, C.; Yang, Z.; Yang, Y.; Guan, X.; Lin, J. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 2020, 27, 4067–4077. [Google Scholar] [CrossRef]
- Zhan, T.; Lu, J.; Jiang, J.; Peng, H.; Li, A.; Chang, J. Viscoelastic properties of the Chinese fir (Cunninghamia lanceolata) during moisture sorption processes determined by harmonic tests. Materials 2016, 9, 1020. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Bachtiar, E.V.; Lu, J.; Niemz, P. Moisture-dependent orthotropic elasticity and strength properties of Chinese fir wood. Eur. J. Wood. Wood. Prod. 2017, 75, 927–938. [Google Scholar] [CrossRef]
- Li, Z.; Zhan, T.; Eder, M.; Jiang, J.; Lyu, J.; Cao, J. Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation. J. Wood Sci. 2021, 67, 1–6. [Google Scholar] [CrossRef]
- ISO 3129:2019; Wood-Sampling Methods and General Requirements for Physical and Mechanical Testing of Small Clear Wood Specimens. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 13061-2:2014; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-13:2016; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 13: Determination of Radial and Tangential Shrinkage. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 13061-14:2016; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 14: Determination of Volumetric Shrinkage. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 13061-15:2017; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 15: Determination of Radial and Tangential Swelling. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13061-16:2017; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 16: Determination of Volumetric Swelling. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13061-3:2014; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 3: Determination of Ultimate Strength in Static Bending. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-4:2014; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 4: Determination of Modulus of Elasticity in Static Bending. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-6:2014; Physical and Mechanical Properties of wood-Test Methods for Small Clear Wood Specimens-Part 6: Determination of Ultimate Tensile Stress Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-10:2017; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 10: Determination of Impact Bending Strength. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13061-12:2017; Physical and Mechanical Properties of Wood-Test Methods for Small Clear wood Specimens-Part 12: Determination of Static Hardness. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13061-17:2017; Physical and Mechanical Properties of Wood-Test Methods for Small Clear Wood Specimens-Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2017.
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Huang, C.; Peng, Z.; Li, J.; Li, X.; Jiang, X.; Dong, Y. Unlocking the role of lignin for preparing the lignin-based wood adhesive: A review. Ind. Crop. Prod. 2022, 187, 115388. [Google Scholar] [CrossRef]
- Kebbi-Benkeder, Z.; Colin, F.; Dumarçay, S.; Gérardin, P. Quantification and characterization of knotwood extractives of 12 European softwood and hardwood species. Ann. Forest. Sci. 2015, 72, 277–284. [Google Scholar] [CrossRef]
- Shigo, A.L. How tree branches are attached to trunks. Can. J. Bot. 1985, 63, 1391–1401. [Google Scholar] [CrossRef]
- Guindos, P.; Ortiz, J. The utility of low-cost photogrammetry for stiffness analysis and finite-element validation of wood with knots in bending. Biosyst. Eng. 2013, 114, 86–96. [Google Scholar] [CrossRef]
- Rocha, M.; Costa, L.; Costa, L.; Araújo, A.; Soares, B.; Hein, P. Wood knots influence the modulus of elasticity and resistance to compression. Floresta. Ambient. 2018, 25, e20170906. [Google Scholar] [CrossRef]
- Saad, K.; Lengyel, A. A Parametric Investigation of the Influence of Knots on the Flexural Behavior of Timber Beams. Period. Polytech-Civ. 2023, 67, 261–271. [Google Scholar] [CrossRef]
- Baño, V.; Arriaga, F.; Soilán, A.; Guaita, M. Prediction of bending load capacity of timber beams using a finite element method simulation of knots and grain deviation. Biosyst. Eng. 2011, 109, 241–249. [Google Scholar] [CrossRef]
- Wright, S.; Dahlen, J.; Montes, C.; Eberhardt, T.L. Quantifying knots by image analysis and modeling their effects on the mechanical properties of loblolly pine lumber. Eur. J. Wood. Wood. Prod. 2019, 77, 903–917. [Google Scholar] [CrossRef]
- Kretschmann, D. Mechanical Properties of Wood; US Dept. of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010. Available online: https://research.fs.usda.gov/treesearch/37427 (accessed on 25 October 2024).
- Keledi, G.; Sudár, A.; Burgstaller, C.; Renner, K.; Móczó, J.; Pukánszky, B. Tensile and impact properties of three-component PP/wood/elastomer composites. Express. Polym. Lett. 2012, 6, 224–236. [Google Scholar] [CrossRef]
- Hristov, V.N.; Lach, R.; Grellmann, W. Impact fracture behavior of modified polypropylene/wood fiber composites. Polym. Test. 2004, 23, 581–589. [Google Scholar] [CrossRef]
- Korkut, D.S.; Guller, B. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource. Technol. 2008, 99, 2846–2851. [Google Scholar] [CrossRef]
- Cavalli, A.; Cibecchini, D.; Togni, M.; Sousa, H.S. A review on the mechanical properties of aged wood and salvaged timber. Constr. Build. Mater. 2016, 114, 681–687. [Google Scholar] [CrossRef]
Property Testing Item | Main Testing Equipment (Model and Factory Address ) | Dimensions of Specimen/mm | Number of Specimen in Each Group/Piece |
---|---|---|---|
Density | Electronic balance (QUINTIX513-1CN, Shanghai, China) | 20 × 20 × 20 | 30 |
Shrinkage | Electric—heating blast hot-air drying oven (DHG-9023A, Shanghai, China), Digital micrometer | 20 × 20 × 20 | 30 |
Swelling | Electric—heating blast hot-air drying oven (DHG-9023A, Shanghai, China), Digital micrometer | 20 × 20 × 20 | 30 |
Ultimate stress in compression parallel to grain | Material tester (AGS-X 20KN, Suzhou, China) | 20 × 20 × 30 | 30 |
Tensile strength parallel to the grain | Material tester (AGS-X 20KN, Suzhou, China) | 20 × 20 × 370 | 34 |
Bending strength | Material tester (AGS-X 20KN, Suzhou, China) | 20 × 20 × 300 | 30 |
Modulus of elasticity in bending | Material tester (AGS-X 20KN, Suzhou, China) | 20 × 20 × 300 | 30 |
Static hardness | Material tester (AGS-X 20KN, Suzhou, China) | 50 × 50 × 70 | 30 |
Impact bending strength | Impact tester (KRJB-100, Jinan, China) | 20 × 20 × 300 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Y.; He, Z.; Fan, S.; Chen, Z.; Li, M.; Ma, X.; Sun, S. Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir. Forests 2024, 15, 2007. https://doi.org/10.3390/f15112007
Ruan Y, He Z, Fan S, Chen Z, Li M, Ma X, Sun S. Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir. Forests. 2024; 15(11):2007. https://doi.org/10.3390/f15112007
Chicago/Turabian StyleRuan, Yingchao, Zongming He, Shaohui Fan, Zhiyun Chen, Ming Li, Xiangqing Ma, and Shuaichao Sun. 2024. "Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir" Forests 15, no. 11: 2007. https://doi.org/10.3390/f15112007
APA StyleRuan, Y., He, Z., Fan, S., Chen, Z., Li, M., Ma, X., & Sun, S. (2024). Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir. Forests, 15(11), 2007. https://doi.org/10.3390/f15112007