Identifying Superior Growth and Photosynthetic Traits in Eighteen Oak Varieties for Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Information
2.2. Experimental Material Information
2.3. Growing Traits Measurement
2.4. Leaf Morphometric Determination
2.5. Photosynthesis Parameter Investigation
2.6. Chlorophyll Content Investigation
2.7. Statistical Analysis
3. Results
3.1. Growth Traits Investigation of the 18 Oak Trees
3.2. Growth Patterns Analysis of the 18 Oak Trees
3.3. Growth Curve Fitting of the 18 Oak Trees
3.4. Leaf Morphological Investigation of the 18 Oak Trees
3.5. Photosynthetic Traits Investigation of the 18 Oak Trees
3.6. Correlation Analysis of Growth and Photosynthetic Traits
3.7. Comprehensive Evaluation of Oak Varieties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; He, C.; Yan, B.; Zuo, Y.; Zhang, T.; Chen, L.; Tan, X.; Li, Z. Effects of fruit load on growth, photosynthesis, biochemical characteristics, and fruit quality of Camellia oleifera. Sci. Hortic. 2023, 317, 112046. [Google Scholar] [CrossRef]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus quercus L.; Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D., Eds.; Tree Physiology; Springer: Berlin/Heidelberg, Germany, 2017; Volume 7. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Liu, C.; Xia, T.; Zhang, Q.; Fang, Y. Phylogeography of the temperate tree species Quercus acutissima in China: Inferences from chloroplast DNA variations. Biochem. Syst. Ecol. 2015, 63, 190–197. [Google Scholar] [CrossRef]
- Chen, S.; You, C.; Zhang, Z.; Xu, Z. Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios. Forests 2024, 15, 1033. [Google Scholar] [CrossRef]
- Costa, D.; Ramos, V.; Tavares, R.M.; Paula, B.; Teresa, L.N. Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete Biscogniauxia mediterranea from cork oak forests in different bioclimates. Sci. Rep. 2022, 12, 2646. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, C.; Zhou, T.; Fei, Y.; Xu, Y.; Qiao, X.; Jiang, M. between leaf traits and environmental factors help explain the growth of evergreen and deciduous species in a subtropical forest. Forest Ecol. Manag. 2024, 560, 121854. [Google Scholar] [CrossRef]
- Sumida, A.; Miyaura, T.; Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 2013, 33, 106–118. [Google Scholar] [CrossRef]
- Campelo, F.; Rubio-Cuadrado, Á.; Montes, F.; Colangelo, M.; Valeriano, C.; Camarero, J.J. Growth phenology adjusts to seasonal changes in water availability in coexisting evergreen and deciduous mediterranean oaks. For. Ecosyst. 2023, 10, 2197–5620. [Google Scholar] [CrossRef]
- Barbeta, A.; Ogaya, R.; Peñuelas, J. Comparative study of diurnal and nocturnal sap flow of Quercus ilex and Phillyrea latifolia in a Mediterranean holm oak forest in Prades (Catalonia, NE Spain). Trees 2012, 26, 1651–1659. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Yuan, L.; Wang, Q.; Zheng, K.; Zhao, C. Environmental Factors Effect on Stem Radial Variations of Picea crassifolia in Qilian Mountains, Northwestern China. Forests 2016, 7, 210. [Google Scholar] [CrossRef]
- Jia, B.; Sun, H.; Shugart, H.H.; Xu, Z.; Zhang, P.; Zhou, G. Growth variations of Dahurian larch plantations across northeast China: Understanding the effects of temperature and precipitation. J. Environ. Manag. 2021, 292, 112739. [Google Scholar] [CrossRef]
- Lavender, D.P. Plant Physiology and Nursery Environment: Interactions Affecting Seedling Growth. In Forestry Nursery Manual: Production of Bareroot Seedlings; Duryea, M.L., Landis, T.D., Perry, C.R., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1984; Volume 11. [Google Scholar]
- Mazza, G.; Sarris, D. Identifying the full spectrum of climatic signals controlling a tree species’ growth and adaptation to climate change. Ecol. Indic. 2021, 130, 108109. [Google Scholar] [CrossRef]
- Du, Y.; Gou, Z. Predicting Passivhaus certification of dwellings using machine learning: A comparative analysis of logistic regression and gradient boosting decision trees. J. Build. 2023, 79, 23527102. [Google Scholar] [CrossRef]
- Karim, A.U.; Aithal, V.; Bhowmick, A.R. Random variation in model parameters: A comprehensive review of stochastic logistic growth equation. Ecol. Modell. 2023, 84, 110475. [Google Scholar] [CrossRef]
- Fusaro, L.; Salvatori, E.; Mereu, S.; Manes, F. Photosynthetic traits as indicators for phenotyping urban and peri-urban forests: A case study in the metropolitan city of Rome. Ecol. Indic. 2019, 103, 301–311. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Guo, S.; Guo, L.; Chen, X.; He, X.; Ma, R.; Yu, M. Effects of fruit load on photosynthetic characteristics of peach leaves and fruit quality. Sci. Hortic. 2022, 299, 110977. [Google Scholar] [CrossRef]
- Amirabad, S.A.; Behtash, F.; Vafaee, Y. Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. Environ. Sci. Pollut. 2020, 27, 12476–12490. [Google Scholar] [CrossRef]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Roccuzzo, G.; Villalobos, F.J.; Testi, L.; Fereres, E. Effects of water deficits on whole tree water use efficiency of orange. Agric. Water Manag. 2014, 140, 61–68. [Google Scholar] [CrossRef]
- Gardiner, E.S.; Löf, M.; O’brien, J.J.; Stanturf, J.A.; Madsen, P. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies. For. Ecol. Manag. 2009, 258, 868–878. [Google Scholar] [CrossRef]
- van Muijen, D.; Anithakumari, A.; Maliepaard, C.; Visser, R.G.F.; van der Linden, C.G. Linking stomatal and mesophyll conductance: A new approach for quantifying mesophyll conductance. Plant Cell Environ. 2016, 39, 2210–2221. [Google Scholar] [CrossRef]
- Xu, B.; Long, Y.; Feng, X.; Zhu, X.; Sai, N.; Chirkova, L.; Betts, A.; Herrmann, J.; Edwards, E.J.; Okamoto, M.; et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat. Commun. 2021, 12, 1952. [Google Scholar] [CrossRef] [PubMed]
- Márquez, D.A.; Stuart-Williams, H.; Farquhar, G.D.; Busch, F.A. Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance. New Phytol. 2021, 233, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Lanning, M.; Wang, L.X.; Kimberly, A.N. The importance of cuticular permeance in assessing plant water–use strategies. Tree Physiol. 2020, 40, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, Z.; Zeng, Y.; Ouyang, S.; Chen, L.; Lei, P.; Deng, X.; Zhao, Z.; Fang, X.; Xiang, W. Tree-level stomatal regulation is more closely related to xylem hydraulic traits than to leaf photosynthetic traits across diverse tree species. Agric. For. Meteorol. 2023, 329, 109291. [Google Scholar] [CrossRef]
- Lv, S.; Wang, J.; Wang, S.; Wang, Q.; Wang, Z.; Fang, Y.; Zhai, W.; Wang, F.; Qu, G.; Ma, W. Quantitative analysis of chlorophyll in Catalpa bungei leaves based on partial least squares regression and spectral reflectance index. Sci. Hortic. 2024, 329, 113019. [Google Scholar] [CrossRef]
- Girma, A.; Skidmore, A.K.; de Bie, C.; Bongers, F.; Schlerf, M. Photosynthetic bark: Use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content. Int. J. Appl. Earth. Obs. 2013, 23, 71–80. [Google Scholar] [CrossRef]
- Bussotti, F.; Gerosa, G.; Digrado, A.; Pollastrini, M. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol. Indic. 2020, 108, 105686. [Google Scholar] [CrossRef]
- Wang, H.; Wang, F.; Wang, G.; Majourhat, K. The responses of photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of nectarine (Prunus persica var. Nectarina Maxim) to greenhouse and field grown conditions. Sci. Hortic. 2007, 112, 66–72. [Google Scholar] [CrossRef]
- Vaz, P.G.; Bugalho, M.N.; Fedriani, J.M. Grazing hinders seed dispersal during crop failure in a declining oak woodland. Sci. Total Environ. 2024, 907, 167835. [Google Scholar] [CrossRef]
- Xia, K.; Daws, M.I.; Hay, F.R.; Chen, W.-Y.; Zhou, Z.-K.; Pritchard, H.W. A comparative study of desiccation responses of seeds of Asian evergreen oaks, Quercus subgenus Cyclobalanopsis and Quercus subgenus Quercus. S. Afr. J. Bot. 2012, 78, 47–54. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.; Fan, J.; Liu, X.; Zhao, F.; Saba, T.; Wang, J.; Wu, A.; Zhang, X.; Zhang, J.; Zhong, Y.; et al. Integrated of transcriptome and plant growth substance profiles to reveal the floral sex differentiation in Zanthoxylum armatum DC. Front. Plant Sci. 2022, 13, 976338. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Saba, T.; Wang, J.; Hui, W.; Kang, X.; Xie, Y.; Wang, K.; Wang, H.; Gong, W. Conversion effects of farmland to Zanthoxylum bungeanum plantations on soil organic carbon fractions in the arid valley of the upper reaches of the Yangtze river, China. Catena 2022, 217, 106523. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.; Liu, X.; Zhao, C.; Zhou, C.; Saba, T.; Wu, J.; Hui, W.; Gong, W. Responses of Antioxidant Enzyme Activity to Different Fertilizer and Soil Moisture Conditions in Relation to Cold Resistance in Zanthoxylum armatum. Hortic Sci. Technol. 2022, 40, 261–272. [Google Scholar] [CrossRef]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. About Tree Height Measurement: Theoretical and Practical Issues for Uncertainty Quantification and Mapping. Forests 2022, 13, 969. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Chang, E.; Zhao, Z.; Wang, R.; Xu, R.; Jiang, J. Alleviation of aluminum phytotoxicity by canola straw biochars varied with their cultivating soils through an investigation of wheat seedling root elongation. Chemosphere 2019, 218, 907–914. [Google Scholar] [CrossRef]
- Potgieter, M. Morphometric data of Colophospermum mopane leaves in the Limpopo Province of South Africa. Data Brief 2020, 31, 106002. [Google Scholar] [CrossRef]
- Morales, A.; López-Bernal, Á.; Testi, L.; Villalobos, F.J. Transpiration and photosynthesis of holm oak trees in southern Spain. Trees For. People 2021, 5, 100115. [Google Scholar] [CrossRef]
- Ábri, T.; Borovics, A.; Csajbók, J.; Kovács, E.; Koltay, A.; Keserű, Z.; Rédei, K. Differences in the Growth and the Ecophysiology of Newly Bred, Drought-Tolerant Black Locust Clones. Forests 2013, 14, 1802. [Google Scholar] [CrossRef]
- Pan, W.; Cheng, X.; Du, R.; Zhu, X.; Guo, W. Detection of chlorophyll content based on optical properties of maize leaves. Acta Part A Mol. Biomol. Spectrosc. 2024, 309, 123843. [Google Scholar] [CrossRef]
- Zhang, L.-N.; Peng, P.-A.; Li, H.-R.; Liu, M.-Y.; Hu, J.-F. Halogenated aromatic pollutants in routine animal-derived food of south China: Occurrence, sources, and dietary intake risks. Environ. Pollut. 2024, 350, 124002. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-M.; Li, Y.-G.; Maisupova, B.; Zhou, X.-B.; Zhang, J.; Liu, H.-L.; Yin, B.-F.; Zang, Y.-X.; Tao, Y.; Zhang, Y.-M. Effects of growth decline on twig functional traits of wild apple trees in two long-term monitoring plots in Yili Valley: Implication for their conservation. Glob. Ecol. Conserv. 2022, 33, e01998. [Google Scholar] [CrossRef]
- Sprengel, L.; Stangler, D.F.; Sheppard, J.; Morhart, C.; Spiecker, H. Comparative analysis of the effects of stem height and artificial pruning on seasonal radial growth dynamics of Wild Cherry (Prunus avium L.) and Sycamore (Acer pseudoplatanus L.) in a widely spaced system. Forests 2018, 9, 174. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Z.; Chen, S.; Wang, S.; Li, Y.; Fan, L. Impact of abandonment on leaf morphology traits and nutrient utilization strategies of dominant tree seedlings in Moso bamboo forests. Glob. Ecol. Conserv. 2024, 52, e02969. [Google Scholar] [CrossRef]
- Köcher, P.; Horna, V.; Leuschner, C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol. 2012, 32, 1021–1032. [Google Scholar] [CrossRef]
- Sampaio, T.; Gonçalves, E.; Faria, C.; Almeida, M.H. Genetic variation among and within Quercus suber L. populations in survival, growth, vigor and plant architecture traits. For. Ecol. Manag. 2021, 483, 118715. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Shuri, K. Seed transfer across geographic regions in different climates leads to reduced tree growth and genetic admixture in Quercus mongolica var. crispula. For. Ecol. Manag. 2021, 482, 118787. [Google Scholar] [CrossRef]
- Rukmangada, M.S.; Sumathy, R.; Kruthika, H.S.; Vorkady, G.N. Mulberry (Morus spp.) growth analysis by morpho-physiological and biochemical components for crop productivity enhancement. Sci Hortic. 2020, 259, 108819. [Google Scholar] [CrossRef]
- Xue, L.; Hagihara, A. Growth analysis on the competition–density effect in Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana) stands. For. Ecol. Manag. 2001, 150, 331–337. [Google Scholar] [CrossRef]
- Corcuera, L.; Camarero, J.J.; Gil-Pelegrín, E. Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. Iawa J. 2004, 25, 185–204. [Google Scholar] [CrossRef]
- Acácio, V.; Dias, F.S.; Catry, F.X.; Rocha, M.; Moreira, F. Landscape dynamics in Mediterranean oak forests under global change: Understanding the role of anthropogenic and environmental drivers across forest types. Glob. Chang. Biol. 2017, 23, 1199–1217. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Preciado, R.P.; Gasca-Pineda, J.; Arteaga, M.C. Effects of global warming on the potential distribution ranges of six Quercus species (Fagaceae). Flora 2019, 251, 32–38. [Google Scholar] [CrossRef]
- Xiao, F.; She, Y.; She, J.; Zhang, J.; Zhang, X.; Luo, C. Assessing habitat suitability and selecting optimal habitats for relict tree Cathaya argyrophylla in Hunan, China: Integrating pollen size, environmental factors, and niche modeling for conservation. Ecol. Indic. 2021, 145, 109669. [Google Scholar] [CrossRef]
- Xu, L.; Liu, H.; Jiang, L.; Zhang, F.; Li, X.; Feng, X.; Huang, J.; Bai, T. WOFOST-N: An improved WOFOST model with nitrogen module for simulation of Korla Fragrant pear tree growth and nitrogen dynamics. Comput. Electron. Agric. 2024, 220, 108860. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Meng, J. A climate-sensitive mixed-effects tree recruitment model for oaks (Quercus spp.) in Hunan Province, south-central China. Forest Ecol. Manag. 2023, 528, 120631. [Google Scholar] [CrossRef]
- Yangaza, I.S.; Nyomora, A.M.; Joseph, C.O.; Sangu, E.M.; Hormaza, J.I. Growth and Fruit morphometric characteristics of local avocado germplasm (Persea americana Mill.) grown in northern Tanzania. Heliyon 2024, 10, e29059. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, T.; Kou, M.; Liu, P.; Wang, L.; Hao, Z.; Yue, M. The relationships between photosynthesis and stomatal traits on the Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01146. [Google Scholar] [CrossRef]
- Liu, C.; Sack, L.; Li, Y.; Zhang, J.; Yu, K.; Zhang, Q.; He, N.; Yu, G. Relationships of stomatal morphology to the environment across plant communities. Nat. Commun. 2023, 14, 6629. [Google Scholar] [CrossRef]
- Aleric, K.M.; Kirkman, L.K. Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. Am. J. Bot. 2005, 92, 682–689. [Google Scholar] [CrossRef]
- Kong, D.-X.; Li, Y.-Q.; Wang, M.-L.; Bai, M.; Zou, R.; Tang, H.; Wu, H. Effects of light intensity on leaf photosynthetic characteristics, chloroplast structure, and alkaloid content of Mahonia bodinieri (Gagnep.) Laferr. Acta Physiol. Plant 2016, 38, 120. [Google Scholar] [CrossRef]
- Li, P.; Huang, X.; Yin, S.; Bao, Y.; Bao, G.; Tong, S.; Dashzeveg, G.; Nanzad, T.; Dorjsuren, A.; Enkhnasan, D.; et al. Optimizing spectral index to estimate the relative chlorophyll content of the forest under the damage of Erannis jacobsoni Djak in Mongolia. Ecol. Indic. 2023, 154, 110714. [Google Scholar] [CrossRef]
- Diatta, A.A.; Min, D.; Jagadish, S.V.K. Chapter Two—Drought stress responses in non-transgenic and transgenic alfalfa—Current status and future research directions. Adv. Agron. 2021, 170, 35–100. [Google Scholar] [CrossRef]
- Didion-Gency, M.; Gessler, A.; Buchmann, N.; Gisler, J.; Schaub, M.; Grossiord, C. Impact of warmer and drier conditions on tree photo-synthetic properties and the role of species interactions. New Phytol. 2022, 236, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Amutenya, A.; Kwembeya, E.; Shikangalah, R.; Tsvuura, Z. Photosynthess, chlorophyll content and water potential of a mistletoe-host pair in a semi-arid savanna. S. Afr. J. Bot. 2023, 163, 311–315. [Google Scholar] [CrossRef]
- Dolácio, C.J.F.; Oliveira, R.S.; Nakajima, N.Y.; Júnior, I.d.S.T.; da Rocha, J.E.C.; Ebling, A.; Gama, M.A.P. Integration of principal component analysis and artificial neural network to modeling productive capacity of eucalypt stands from biophysical attributes. Forest Ecol. Manag. 2020, 460, 117862. [Google Scholar] [CrossRef]
- de Souza, M.T.P.; de Azevedo, G.B.; Azevedo, G.T.d.O.S.; Teodoro, L.P.R.; Plaster, O.B.; de Assunção, P.C.G.; Teodoro, P.E. Growth of native forest species in a mixed stand in the Brazilian Savanna. Forest Ecol. Manag. 2020, 462, 118011. [Google Scholar] [CrossRef]
- Littke, K.; Holub, S.; Slesak, R.; Littke, W.; Turnblom, E. Five-year growth, biomass, and nitrogen pools of Douglas-fir following intensive forest management treatments. Forest Ecol. Manag. 2021, 494, 119276. [Google Scholar] [CrossRef]
- Terhonen, E.; Sun, H.; Buée, M.; Kasanen, R.; Paulin, L.; Asiegbu, F. Effects of the use of biocontrol agent (Phlebiopsis gigantea) on fungal communities on the surface of Picea abies stumps. Forest Ecol. Manag. 2013, 310, 428–433. [Google Scholar] [CrossRef]
- Alemu, A.; Åstrand, J.; Montesinos-López, O.A.; Sánchez, J.I.Y.; Fernández-Gónzalez, J.; Tadesse, W.; Vetukuri, R.R.; Carlsson, A.S.; Ceplitis, A.; Crossa, J.; et al. Genomic selection in plant breeding: Key factors shaping two decades of progress. Mol. Plant 2024, 17, 552–578. [Google Scholar] [CrossRef]
- Pan, Y.; Li, S.; Wang, C.; Ma, W.; Xu, G.; Shao, L.; Li, K.; Zhao, X.; Jiang, T. Early evaluation of growth traits of Larix kaempferi clones. J. For. Res. 2018, 29, 1031–1039. [Google Scholar] [CrossRef]
- Lai, M.; Sun, X.; Chen, D.; Xie, Y.; Zhang, S. Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection. BMC Genet. 2014, 15, S10. [Google Scholar] [CrossRef]
No. | Oak Variety Name | Origin | Abbreviation |
---|---|---|---|
1 | Quercus lyrata Walt. | Henan, China | Ql |
2 | Quercus acutissima Carruth. | Shandong, China | Qa |
3 | Quercus coccinea Muench. | Shandong, China | Qc |
4 | Quercus dentata Thunb. | Shandong, China | Qd |
5 | Quercus mongolica Fisch. ex Ledeb. | Shandong, China | Qm |
6 | Quercus nuttallii Nutt. | Chongqing, China | Qn |
7 | Quercus palustris Münchh. | Shandong, China | Qp0 |
8 | Quercus palustris Münchh. (No.1) | Shandong, China | Qp1 |
9 | Quercus palustris Münchh. (No.2) | Shandong, China | Qp2 |
10 | Quercus palustris Münchh. (No.3) | Shandong, China | Qp3 |
11 | Quercus robur L. (Shandong) | Shandong, China | Qr1 |
12 | Quercus robur L. (England) | Chengdu, China | Qr2 |
13 | Quercus robur L. (Helsinki) | Chengdu, China | Qr3 |
14 | Quercus robur L. (Xinjiang) | Xinjiang, China | Qr4 |
15 | Quercus robur × bicolor ‘Nadler’. | Shandong, China | Qrb |
16 | Quercus rubra L. (Shandong No.1) | Shandong, China | Qru1 |
17 | Quercus rubra L. (Shandong No.2) | Shandong, China | Qru2 |
18 | Quercus wutaishansea Mary. | Shandong, China | Qw |
Principal Component | Eigenvalue | Percentage of Variance (%) | Cumulative (%) |
---|---|---|---|
Principal component 1 | 3.384 | 42.299 | 42.299 |
Principal component 2 | 2.129 | 26.608 | 68.907 |
Principal component 3 | 1.037 | 12.962 | 81.869 |
Principal component 4 | 0.575 | 7.191 | 89.060 |
Principal component 5 | 0.526 | 6.576 | 95.636 |
Principal component 6 | 0.263 | 3.283 | 98.919 |
Principal component 7 | 0.062 | 0.780 | 99.699 |
Principal component 8 | 0.024 | 0.301 | 100 |
Species | Principal Component Value | PC1 | ||
---|---|---|---|---|
PC1 | PC2 | Total Score | ||
Qa | 2.056 | 0.517 | 1.007 | 1 |
Qn | 2.312 | −0.459 | 0.856 | 2 |
Qw | 0.865 | −0.160 | 0.324 | 3 |
Qm | 0.943 | −0.708 | 0.211 | 4 |
Qr1 | −0.015 | 0.312 | 0.077 | 5 |
Qp3 | 0.865 | −0.160 | 0.324 | 6 |
Qd | 0.085 | −0.538 | −0.108 | 7 |
Qr4 | −1.528 | 0.656 | −0.472 | 8 |
Qrb | −0.564 | −0.823 | −0.457 | 9 |
Ql | −0.891 | −0.426 | −0.490 | 10 |
Qru2 | −0.665 | −1.447 | −0.666 | 11 |
Investigate Traits | Average Value of Superior Varieties | Average Value of All Varieties | Growth Increment/% |
---|---|---|---|
Ground diameter/cm | 15.35 ± 4.38 | 12.64 ± 3.42 | 21.44 |
Seedling height/cm | 125.44 ± 29.10 | 118.60 ± 27.03 | 5.77 |
Leaf length/cm | 16.05 ± 1.64 | 15.02 ± 4.09 | 6.86 |
Leaf area/cm | 78.83 ± 13.69 | 74.76 ± 40.44 | 5.44 |
E/mmol m−2 | 3.27 ± 0.02 | 2.67 ± 0.09 | 22.47 |
Chlorophyll content/µg mL−1 | 41.51 ± 3.91 | 38.30 ± 4.96 | 8.45 |
gsw/mol m−2 s−1 | 0.11 ± 0.02 | 0.09 ± 0.08 | 22.22 |
gtw/mol m−2 s−1 | 0.12 ± 0.09 | 0.09 ± 0.49 | 33.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Huang, X.; Peng, Y.; Wu, H.; Xu, Z.; Tan, B.; Zhong, Y.; Zhu, P.; Gong, W.; Chen, G.; et al. Identifying Superior Growth and Photosynthetic Traits in Eighteen Oak Varieties for Southwest China. Forests 2024, 15, 2006. https://doi.org/10.3390/f15112006
Qi Z, Huang X, Peng Y, Wu H, Xu Z, Tan B, Zhong Y, Zhu P, Gong W, Chen G, et al. Identifying Superior Growth and Photosynthetic Traits in Eighteen Oak Varieties for Southwest China. Forests. 2024; 15(11):2006. https://doi.org/10.3390/f15112006
Chicago/Turabian StyleQi, Zengzhen, Xiang Huang, Yang Peng, Hongyi Wu, Zhenfeng Xu, Bo Tan, Yu Zhong, Peng Zhu, Wei Gong, Gang Chen, and et al. 2024. "Identifying Superior Growth and Photosynthetic Traits in Eighteen Oak Varieties for Southwest China" Forests 15, no. 11: 2006. https://doi.org/10.3390/f15112006
APA StyleQi, Z., Huang, X., Peng, Y., Wu, H., Xu, Z., Tan, B., Zhong, Y., Zhu, P., Gong, W., Chen, G., Chen, X., & Hui, W. (2024). Identifying Superior Growth and Photosynthetic Traits in Eighteen Oak Varieties for Southwest China. Forests, 15(11), 2006. https://doi.org/10.3390/f15112006