Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
- S1:
- Yingbazha to Shazihe,
- S2:
- Shazihe to Wusiman,
- S3:
- Wusiman to Arqike, and
- S4:
- Arqike to Qiala.
2.2. Vegetation Response Monitoring Sample Strips and Sample Placement
2.3. Data Sources
2.4. Study Methods
2.4.1. Water Extraction and Accuracy Verification
2.4.2. Extraction of the Intra-Annual Vegetation Characteristic Data
2.4.3. Sen + MK Trend Analysis
2.4.4. Mann–Kendall Mutation Analysis
2.4.5. Phased Development of Ecological Sluice Systems Along the Tarim River
2.4.6. Correlation Analysis
3. Results
3.1. Spatiotemporal Dynamics of SWA in the Middle Reaches of the Tarim River
3.1.1. Temporal Dynamics in SWA of the MROTR
3.1.2. Spatial Changes in SWA of the MROTR
3.1.3. Dynamic Characteristics of the SWA Before and After the Control of Water by Ecological Sluice Gates
3.2. Characteristics of the Spatiotemporal Dynamics of Vegetation in the MROTR
3.2.1. Temporal Changes in Vegetation
3.2.2. Spatial Variation in Vegetation
3.2.3. Characterization of the Vegetation Changes Before and After Water Control by Ecological Gates
3.3. Response of Vegetation to Surface Water Area Changes in the MROTR
3.3.1. Monitoring Results of the Experimental Sample Points
3.3.2. Time-Lag Correlation Between Vegetation and the SWA
3.3.3. Correlations of Vegetation Indicators with SWA
4. Discussion
4.1. Impact of Ecological Sluice Gate Water Control on Water Bodies
4.2. Impact of Ecological Gate-Controlled Water on Desert Riparian Vegetation
4.3. Limitations and Future Prospects of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Jiang, W.; Ye, X.; Zhang, L.; Jia, K. Water Occurrence in the Two Largest Lakes in China Based on Long-Term Landsat Images: Spatiotemporal Changes, Ecological Impacts, and Influencing Factors. Remote Sens. 2022, 14, 3875. [Google Scholar] [CrossRef]
- Rassam, D.W.; Peeters, L.; Pickett, T.; Jolly, I.; Holz, L. Accounting for Surface–Groundwater Interactions and Their Uncertainty in River and Groundwater Models: A Case Study in the Namoi River, Australia. Environ. Model. Softw. 2013, 50, 108–119. [Google Scholar] [CrossRef]
- Yu, J.; Rong, Y.; Lin, Y.; Li, X.; Gao, C.; Zhang, T.; Zhou, X.; Cai, J.; Sneeuw, N. Spatiotemporal Dynamic Impacts of Lake Victoria Water Volume Variations on Sustainable Economic Development. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103475. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Xu, C.; Li, W. Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years. Water Resour. Manag. 2008, 22, 1159–1171. [Google Scholar] [CrossRef]
- Guo, L.; Shan, N.; Zhang, Y.; Sun, F.; Liu, W.; Shi, Z.; Zhang, Q. Separating the Effects of Climate Change and Human Activity on Water Use Efficiency over the Beijing-Tianjin Sand Source Region of China. Sci. Total Environ. 2019, 690, 584–595. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.; Yang, Y.; Han, Y.; Wang, X. Evaluation of Water Resources Carrying Capacity in Tarim River Basin under Game Theory Combination Weights. Ecol. Indic. 2023, 154, 110609. [Google Scholar] [CrossRef]
- Günen, M.A.; Atasever, U.H. Remote Sensing and Monitoring of Water Resources: A Comparative Study of Different Indices and Thresholding Methods. Sci. Total Environ. 2024, 926, 172117. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued Decrease of Open Surface Water Body Area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous Monitoring of Lake Dynamics on the Mongolian Plateau Using All Available Landsat Imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S. Automatic Monitoring of Surface Water Dynamics Using Sentinel-1 and Sentinel-2 Data with Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103010. [Google Scholar] [CrossRef]
- Jin, H.; Fang, S.; Chen, C. Mapping of the Spatial Scope and Water Quality of Surface Water Based on the Google Earth Engine Cloud Platform and Landsat Time Series. Remote Sens. 2023, 15, 4986. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent Trends of Open-Surface Water Body Area in the Contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Xu, H.; Ye, M.; Li, J. The Ecological Characteristics of the Riparian Vegetation Affected by River Overflowing Disturbance in the Lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- Jiao, A.; Wang, W.; Ling, H.; Deng, X.; Yan, J.; Chen, F. Effect Evaluation of Ecological Water Conveyance in Tarim River Basin, China. Front. Environ. Sci. 2022, 10, 1019695. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, Y.; Li, W.; Yan, Y. Effect of the Ecological Water Conveyance Project on Environment in the Lower Tarim River, Xinjiang, China. Environ. Monit. Assess. 2009, 149, 9–17. [Google Scholar] [CrossRef]
- Li, M.; Deng, M.; Ling, H.; Xu, J. Development of a New Rotational Irrigation Model in an Arid Basin Based on Ecological Zoning and Sluice Regulation. Agric. Water Manag. 2024, 296, 108800. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, R.; Chen, X.; Yu, G.; Gan, M.; Disse, M. Agricultural Water Allocation Strategies along the Oasis of Tarim River in Northwest China. Agric. Water Manag. 2017, 187, 24–36. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Q. Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region. Land 2023, 12, 2073. [Google Scholar] [CrossRef]
- Moreno, M.; Ortiz, P.; Ortiz, R. Analysis of the Impact of Green Urban Areas in Historic Fortified Cities Using Landsat Historical Series and Normalized Difference Indices. Sci. Rep. 2023, 13, 8982. [Google Scholar] [CrossRef]
- Wu, J.; Gao, F.; Xu, H.; He, B.; Liu, K. Dynamic Monitoring of Open-Surface Water Bodies in the Middle Reaches of the Tarim River Based on the GEE Cloud Platform. AQUA Water Infrastruct. Ecosyst. Soc. 2024, 73, jws2024233. [Google Scholar] [CrossRef]
- Song, J.; Betz, F.; Aishan, T.; Halik, Ü.; Abliz, A. Impact of Water Supply on the Restoration of the Severely Damaged Riparian Plants along the Tarim River in Xinjiang, Northwest China. Ecol. Indic. 2024, 158, 111570. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, S.; Zhang, Q.; Liu, Y.; Zhou, H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. [Google Scholar] [CrossRef]
- Qian, K.; Ma, X.; Yan, W.; Li, J.; Xu, S.; Liu, Y.; Luo, C.; Yu, W.; Yu, X.; Wang, Y.; et al. Trade-Offs and Synergies among Ecosystem Services in Inland River Basins under the Influence of Ecological Water Transfer Project: A Case Study on the Tarim River Basin. Sci. Total Environ. 2024, 908, 168248. [Google Scholar] [CrossRef]
- Li, W.; Huang, F.; Shi, F.; Wei, X.; Zamanian, K.; Zhao, X. Human and Climatic Drivers of Land and Water Use from 1997 to 2019 in Tarim River Basin, China. Int. Soil Water Conserv. Res. 2021, 9, 532–543. [Google Scholar] [CrossRef]
- Ståhl, G.; Ekström, M.; Dahlgren, J.; Esseen, P.; Grafström, A.; Jonsson, B. Presence–Absence Sampling for Estimating Plant Density Using Survey Data with Variable Plot Size. Methods Ecol. Evol. 2020, 11, 580–590. [Google Scholar] [CrossRef]
- Arfa, A.; Minaei, M. Utilizing Multitemporal Indices and Spectral Bands of Sentinel-2 to Enhance Land Use and Land Cover Classification with Random Forest and Support Vector Machine. Adv. Space Res. 2024. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Suitability of Spectral Indices for Evaluating Vegetation Characteristics on Arid Rangelands. Remote Sens. Environ. 1987, 23, 213-IN8. [Google Scholar] [CrossRef]
- Waring, R.H.; Coops, N.C.; Fan, W.; Nightingale, J.M. MODIS Enhanced Vegetation Index Predicts Tree Species Richness across Forested Ecoregions in the Contiguous U.S.A. Remote Sens. Environ. 2006, 103, 218–226. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, R.; Zhao, L.; Lyu, B.; Wang, J.; Zhang, L. A Contrarian Growth: The Spatiotemporal Dynamics of Open-Surface Water Bodies on the Northern Slope of Kunlun Mountains. Ecol. Indic. 2023, 157, 111249. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Song, X.; Sun, W. Dynamic Monitoring of Surface Water Bodies and Their Influencing Factors in the Yellow River Basin. Remote Sens. 2023, 15, 5157. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Li, J.; Wang, X.; Chen, B.; Sun, C.; Wang, J.; Tian, P.; Zhang, H. Tracking Changes in Coastal Land Cover in the Yellow Sea, East Asia, Using Sentinel-1 and Sentinel-2 Time-Series Images and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2023, 196, 429–444. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Zhao, Y.; Wang, R.; Lu, J.; Zhuang, H.; Bai, L. Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China. Remote Sens. 2023, 15, 1918. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a Global ~90 m Water Body Map Using Multi-Temporal Landsat Images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation Monitoring for Mountainous Regions Using a New Integrated Topographic Correction (ITC) of the SCS + C Correction and the Shadow-Eliminated Vegetation Index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water Body Mapping Method with HJ-1A/B Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wang, Y.; Hu, Y.; Zhang, B. A SPECLib-Based Operational Classification Approach: A Preliminary Test on China Land Cover Mapping at 30 m. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 83–94. [Google Scholar] [CrossRef]
- Deng, X.; Song, C.; Liu, K.; Ke, L.; Zhang, W.; Ma, R.; Zhu, J.; Wu, Q. Remote Sensing Estimation of Catchment-Scale Reservoir Water Impoundment in the Upper Yellow River and Implications for River Discharge Alteration. J. Hydrol. 2020, 585, 124791. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Meng, L.; Asrar, G.R.; Lu, C.; Wu, Q. A Dataset of 30 m Annual Vegetation Phenology Indicators (1985–2015) in Urban Areas of the Conterminous United States. Earth Syst. Sci. Data 2019, 11, 881–894. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Asrar, G.R.; Mao, J.; Li, X.; Li, W. Response of Vegetation Phenology to Urbanization in the Conterminous United States. Glob. Change Biol. 2017, 23, 2818–2830. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Cui, X.; Wu, F.; Yan, Y.; Peng, Q.; Qian, Z.; Xu, Y. Responses of Vegetation Spring Phenology to Climatic Factors in Xinjiang, China. Ecol. Indic. 2021, 124, 107286. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend Analysis of Climate Time Series: A Review of Methods. Earth Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Behdani, Z.; Darehmiraki, M. Theil-Sen Estimators for Fuzzy Regression Model. Iran. J. Fuzzy Syst. 2024, 21, 177–192. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and Time Series Trend Analysis of Rainfall and Temperature in Northcentral Ethiopia: A Case Study in Woleka Sub-Basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Xu, W.; Wu, Y.; Lei, X.; Ye, J.; Geng, J.; Ding, Z. Long-Time Series Ecological Environment Quality Monitoring and Cause Analysis in the Dianchi Lake Basin, China. Ecol. Indic. 2023, 148, 110084. [Google Scholar] [CrossRef]
- Rebekić, A.; Lončarić, Z.; Petrović, S.; Marić, S. Pearson’s or Spearman’s Correlation Coefficient—Which One to Use? Poljoprivreda 2015, 21, 47–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Zhang, D. Quantitative Classification and Analysis on Plant Communities in the Middle Reaches of the Tarim River. J. Geogr. Sci. 2003, 13, 225–232. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.-S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Framework Directive at the Age of 10: A Critical Review of the Achievements with Recommendations for the Future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef]
- Wang, W.; Han, F.; Kong, Z.; Ling, H.; Hao, X. The Maximum Threshold of Vegetation Restoration (EVI-Area) in Typical Watersheds of Arid Regions under Water Constraints. Ecol. Indic. 2024, 158, 111580. [Google Scholar] [CrossRef]
- Yan, D.; Chen, L.; Sun, H.; Liao, W.; Chen, H.; Wei, G.; Zhang, W.; Tuo, Y. Allocation of Ecological Water Rights Considering Ecological Networks in Arid Watersheds: A Framework and Case Study of Tarim River Basin. Agric. Water Manag. 2022, 267, 107636. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, P.; Xu, H.; Zhang, G. Determining the Ecological Water Allocation in a Hyper-Arid Catchment with Increasing Competition for Water Resources. Glob. Planet. Chang. 2016, 145, 143–152. [Google Scholar] [CrossRef]
- Al-Munqedhi, B.M.; El-Sheikh, M.A.; Alfarhan, A.H.; Alkahtani, A.M.; Arif, I.A.; Rajagopal, R.; Alharthi, S.T. Climate Change and Hydrological Regime in Arid Lands: Impacts of Dams on the Plant Diversity, Vegetation Structure and Soil in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 3194–3206. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Qian, K.; Ye, M. Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability 2023, 15, 1243. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Mohtaram, A.; Shafizadeh-Moghadam, H.; Ketabchi, H. Reconstruction of Total Water Storage Anomalies from GRACE Data Using the LightGBM Algorithm with Hydroclimatic and Environmental Covariates. Groundw. Sustain. Dev. 2024, 26, 101260. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Chen, Y.N.; Pan, B.R. Distribution and Floristics of Desert Plant Communities in the Lower Reaches of Tarim River, Southern Xinjiang, People’s Republic of China. J. Arid Environ. 2005, 63, 772–784. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Meinzer, F.C.; Arce, M.E. Soil Water Availability and Rooting Depth as Determinants of Hydraulic Architecture of Patagonian Woody Species. Oecologia 2009, 160, 631–641. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting Depths, Lateral Root Spreads and below-Ground/above-Ground Allometries of Plants in Water-Limited Ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, C.; Li, J.; Li, Y.; Lv, G.; Liu, T. Effect of Groundwater Depth on Riparian Plant Diversity along Riverside-Desert Gradients in the Tarim River. J. Plant Ecol. 2019, 12, 564–573. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Tóth, T.; Di Bella, C.M. The Effects of Tree Establishment on Water and Salt Dynamics in Naturally Salt-Affected Grasslands. Oecologia 2007, 152, 695–705. [Google Scholar] [CrossRef]
- Weisbrod, N.; Nativh, R.; Adar, K.M.; Ronend, D. Salt Accumulation and Flushing in Unsaturated Fractures in an Arid Environment. Groundwater 2000, 38, 452–461. [Google Scholar] [CrossRef]
- Xin, P.; Wilson, A.; Shen, C.; Ge, Z.; Moffett, K.B.; Santos, I.R.; Chen, X.; Xu, X.; Yau, Y.Y.Y.; Moore, W.; et al. Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry. Rev. Geophys. 2022, 60, e2021RG000740. [Google Scholar] [CrossRef]
- Keram, A.; Halik, Ü.; Aishan, T.; Keyimu, M.; Jiapaer, K.; Li, G. Tree Mortality and Regeneration of Euphrates Poplar Riparian Forests along the Tarim River, Northwest China. For. Ecosyst. 2021, 8, 49. [Google Scholar] [CrossRef]
- Hayward, H.E.; Wadleigh, C.H. Plant Growth on Saline and Alkali Soils*. In Advances in Agronomy; Norman, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1949; Volume 1, pp. 1–38. [Google Scholar]
- Sun, J.; Zhao, X.; Fang, Y.; Gao, F.; Wu, C.; Xia, J. Effects of Water and Salt for Groundwater-Soil Systems on Root Growth and Architecture of Tamarix Chinensis in the Yellow River Delta, China. J. For. Res. 2023, 34, 441–452. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Zilliacus, H.; Li, W.-H.; Zhang, H.-F.; Chen, Y.-P. Ground-Water Level Affects Plant Species Diversity along the Lower Reaches of the Tarim River, Western China. J. Arid Environ. 2006, 66, 231–246. [Google Scholar] [CrossRef]
Data | Time Period | Spatial Resolution | Time Resolution | Data Source |
---|---|---|---|---|
Landsat 5 TM | 1990–2012 | 30 m | 15 d | U.S. Geological Survey |
Landsat 7 ETM+ | 1999–2002 | 30 m | 15 d | U.S. Geological Survey |
Landsat 8 OLI | 2013–2020 | 30 m | 15 d | U.S. Geological Survey |
Sentinel-2MSI | 2017–2020 | 10 m | 10 d | European Space Agency |
NASADEM | 2020 | 30 m | — | NASA Jet Propulsion Laboratory |
JRC GSW | 1984–2022 | 30 m | — | European Commission Joint Research Centre |
Level | Criteria for Division | Year |
---|---|---|
I | SWA < 200 km2 | 1990, 1997, 2008, 2009 |
II | 200 km2 < SWA < 300 km2 | 1991, 1992, 1993, 1995, 1997, 1999, 2000, 2001, 2002, 2003, 2004, 2012, 2014, 2020, 2021 |
III | 300 km2 < SWA < 400 km2 | 1996, 1998 2005, 2006, 2010 2011, 2013, 2015, 2018, 2019 |
IV | SWA > 400 km2 | 1994, 2016, 2017, 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Gao, F.; He, B.; Sheng, F.; Xu, H.; Liu, K.; Zhang, Q. Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River. Forests 2024, 15, 2005. https://doi.org/10.3390/f15112005
Wu J, Gao F, He B, Sheng F, Xu H, Liu K, Zhang Q. Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River. Forests. 2024; 15(11):2005. https://doi.org/10.3390/f15112005
Chicago/Turabian StyleWu, Jie, Fan Gao, Bing He, Fangyu Sheng, Hailiang Xu, Kun Liu, and Qin Zhang. 2024. "Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River" Forests 15, no. 11: 2005. https://doi.org/10.3390/f15112005
APA StyleWu, J., Gao, F., He, B., Sheng, F., Xu, H., Liu, K., & Zhang, Q. (2024). Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River. Forests, 15(11), 2005. https://doi.org/10.3390/f15112005