Predicting Operational Events in Mechanized Weed Control Operations by Offline Multi-Modal Data and Machine Learning Provides Highly Accurate Classification in Time Domain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sourcing and Processing
2.2. Prediction of Operational Events by Machine Learning
2.3. Computer Architecture and Data Visualization
3. Results
3.1. Training and Validation
3.2. Testing on Unseen Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Modality | N | n | α | TT | VT | AUC | CA | F1 | PREC | REC | SPEC | LOSS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AS | 1 | 10 | 0.0001 | 113.013 | 0.018 | 0.985 | 0.926 | 0.911 | 0.901 | 0.926 | 0.966 | 0.198 |
1 | 10 | 0.001 | 108.273 | 0.015 | 0.985 | 0.925 | 0.910 | 0.900 | 0.925 | 0.966 | 0.199 | |
1 | 10 | 0.01 | 108.526 | 0.017 | 0.985 | 0.920 | 0.899 | 0.895 | 0.920 | 0.964 | 0.204 | |
1 | 10 | 0.1 | 60.654 | 0.016 | 0.980 | 0.913 | 0.885 | 0.865 | 0.913 | 0.962 | 0.234 | |
1 | 10 | 1 | 32.598 | 0.018 | 0.955 | 0.907 | 0.878 | 0.856 | 0.907 | 0.938 | 0.292 | |
1 | 10 | 10 | 16.659 | 0.016 | 0.935 | 0.859 | 0.827 | 0.797 | 0.859 | 0.794 | 0.455 | |
AS | 5 | 10 | 0.0001 | 57.992 | 0.021 | 0.986 | 0.928 | 0.915 | 0.904 | 0.928 | 0.965 | 0.191 |
5 | 10 | 0.001 | 64.708 | 0.032 | 0.986 | 0.928 | 0.916 | 0.905 | 0.928 | 0.965 | 0.191 | |
5 | 10 | 0.01 | 61.388 | 0.023 | 0.985 | 0.928 | 0.915 | 0.905 | 0.928 | 0.965 | 0.193 | |
5 | 10 | 0.1 | 66.964 | 0.020 | 0.985 | 0.928 | 0.915 | 0.904 | 0.928 | 0.964 | 0.193 | |
5 | 10 | 1 | 80.314 | 0.033 | 0.978 | 0.914 | 0.885 | 0.864 | 0.914 | 0.957 | 0.239 | |
5 | 10 | 10 | 45.376 | 0.022 | 0.936 | 0.864 | 0.832 | 0.803 | 0.864 | 0.810 | 0.442 | |
AS | 10 | 10 | 0.0001 | 58.585 | 0.029 | 0.983 | 0.918 | 0.908 | 0.900 | 0.918 | 0.967 | 0.208 |
10 | 10 | 0.001 | 59.474 | 0.030 | 0.984 | 0.924 | 0.911 | 0.900 | 0.924 | 0.963 | 0.201 | |
10 | 10 | 0.01 | 57.133 | 0.028 | 0.984 | 0.925 | 0.911 | 0.900 | 0.925 | 0.963 | 0.198 | |
10 | 10 | 0.1 | 82.339 | 0.034 | 0.984 | 0.924 | 0.910 | 0.899 | 0.924 | 0.962 | 0.201 | |
10 | 10 | 1 | 88.714 | 0.036 | 0.981 | 0.913 | 0.884 | 0.864 | 0.913 | 0.959 | 0.232 | |
10 | 10 | 10 | 77.527 | 0.031 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.790 | |
AS | 1 | 100 | 0.0001 | 114.736 | 0.028 | 0.986 | 0.929 | 0.915 | 0.904 | 0.929 | 0.964 | 0.192 |
1 | 100 | 0.001 | 112.851 | 0.040 | 0.986 | 0.927 | 0.913 | 0.902 | 0.927 | 0.964 | 0.193 | |
1 | 100 | 0.01 | 82.035 | 0.029 | 0.982 | 0.913 | 0.885 | 0.865 | 0.913 | 0.961 | 0.223 | |
1 | 100 | 0.1 | 86.150 | 0.029 | 0.982 | 0.913 | 0.885 | 0.865 | 0.913 | 0.961 | 0.223 | |
1 | 100 | 1 | 29.645 | 0.030 | 0.956 | 0.908 | 0.880 | 0.857 | 0.908 | 0.942 | 0.289 | |
1 | 100 | 10 | 13.096 | 0.028 | 0.935 | 0.858 | 0.825 | 0.795 | 0.858 | 0.790 | 0.451 | |
AS | 5 | 100 | 0.0001 | 110.955 | 0.091 | 0.981 | 0.914 | 0.903 | 0.893 | 0.914 | 0.964 | 0.216 |
5 | 100 | 0.001 | 101.378 | 0.072 | 0.981 | 0.917 | 0.902 | 0.891 | 0.917 | 0.954 | 0.215 | |
5 | 100 | 0.01 | 100.513 | 0.087 | 0.978 | 0.910 | 0.897 | 0.885 | 0.910 | 0.957 | 0.235 | |
5 | 100 | 0.1 | 151.335 | 0.080 | 0.983 | 0.920 | 0.908 | 0.897 | 0.920 | 0.966 | 0.207 | |
5 | 100 | 1 | 222.884 | 0.087 | 0.978 | 0.912 | 0.884 | 0.863 | 0.912 | 0.954 | 0.241 | |
5 | 100 | 10 | 158.203 | 0.084 | 0.935 | 0.866 | 0.835 | 0.806 | 0.866 | 0.820 | 0.429 | |
AS | 10 | 100 | 0.0001 | 194.814 | 0.156 | 0.980 | 0.918 | 0.908 | 0.899 | 0.918 | 0.960 | 0.218 |
10 | 100 | 0.001 | 186.888 | 0.168 | 0.982 | 0.915 | 0.905 | 0.896 | 0.915 | 0.964 | 0.213 | |
10 | 100 | 0.01 | 189.664 | 0.170 | 0.979 | 0.917 | 0.900 | 0.889 | 0.917 | 0.961 | 0.221 | |
10 | 100 | 0.1 | 275.760 | 0.153 | 0.981 | 0.921 | 0.906 | 0.895 | 0.921 | 0.960 | 0.214 | |
10 | 100 | 1 | 334.031 | 0.145 | 0.976 | 0.910 | 0.882 | 0.862 | 0.910 | 0.956 | 0.244 | |
10 | 100 | 10 | 434.342 | 0.158 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.791 | |
AS | 1 | 1000 | 0.0001 | 339.500 | 0.141 | 0.986 | 0.929 | 0.917 | 0.906 | 0.929 | 0.964 | 0.191 |
1 | 1000 | 0.001 | 326.498 | 0.158 | 0.986 | 0.930 | 0.917 | 0.906 | 0.930 | 0.964 | 0.191 | |
1 | 1000 | 0.01 | 329.788 | 0.152 | 0.982 | 0.914 | 0.886 | 0.885 | 0.914 | 0.962 | 0.221 | |
1 | 1000 | 0.1 | 325.097 | 0.163 | 0.982 | 0.914 | 0.886 | 0.885 | 0.914 | 0.962 | 0.221 | |
1 | 1000 | 1 | 122.386 | 0.158 | 0.956 | 0.908 | 0.879 | 0.857 | 0.908 | 0.941 | 0.288 | |
1 | 1000 | 10 | 62.033 | 0.153 | 0.935 | 0.861 | 0.829 | 0.800 | 0.861 | 0.802 | 0.446 | |
AS | 5 | 1000 | 0.0001 | 3444.300 | 1.977 | 0.982 | 0.920 | 0.905 | 0.895 | 0.920 | 0.964 | 0.212 |
5 | 1000 | 0.001 | 3353.729 | 2.016 | 0.983 | 0.921 | 0.911 | 0.903 | 0.921 | 0.965 | 0.206 | |
5 | 1000 | 0.01 | 5764.162 | 2.073 | 0.981 | 0.917 | 0.905 | 0.895 | 0.917 | 0.966 | 0.220 | |
5 | 1000 | 0.1 | 5371.765 | 1.968 | 0.981 | 0.917 | 0.904 | 0.893 | 0.917 | 0.961 | 0.225 | |
5 | 1000 | 1 | 5936.627 | 2.029 | 0.970 | 0.906 | 0.877 | 0.854 | 0.906 | 0.935 | 0.265 | |
5 | 1000 | 10 | 5273.351 | 1.935 | 0.918 | 0.788 | 0.731 | 0.718 | 0.788 | 0.511 | 0.573 | |
AS | 10 | 1000 | 0.0001 | 11,822.498 | 4.064 | 0.971 | 0.916 | 0.895 | 0.887 | 0.916 | 0.955 | 0.265 |
10 | 1000 | 0.001 | 10,310.822 | 5.091 | 0.973 | 0.914 | 0.892 | 0.884 | 0.914 | 0.947 | 0.254 | |
10 | 1000 | 0.01 | 11,545.202 | 6.115 | 0.975 | 0.897 | 0.892 | 0.890 | 0.897 | 0.965 | 0.255 | |
10 | 1000 | 0.1 | 11,281.575 | 4.423 | 0.967 | 0.892 | 0.875 | 0.861 | 0.892 | 0.926 | 0.282 | |
10 | 1000 | 1 | 18,172.055 | 5.781 | 0.969 | 0.876 | 0.854 | 0.849 | 0.876 | 0.955 | 0.311 | |
10 | 1000 | 10 | 10,284.011 | 5.245 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.792 |
Modality | N | n | α | TT | VT | AUC | CA | F1 | PREC | REC | SPEC | LOSS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 10 | 0.0001 | 131.311 | 0.012 | 0.972 | 0.924 | 0.910 | 0.898 | 0.924 | 0.951 | 0.232 |
1 | 10 | 0.001 | 131.927 | 0.015 | 0.972 | 0.924 | 0.909 | 0.897 | 0.924 | 0.951 | 0.232 | |
1 | 10 | 0.01 | 84.366 | 0.014 | 0.971 | 0.915 | 0.893 | 0.886 | 0.915 | 0.947 | 0.249 | |
1 | 10 | 0.1 | 41.572 | 0.017 | 0.971 | 0.911 | 0.883 | 0.860 | 0.911 | 0.947 | 0.274 | |
1 | 10 | 1 | 33.968 | 0.014 | 0.940 | 0.911 | 0.882 | 0.861 | 0.911 | 0.949 | 0.322 | |
1 | 10 | 10 | 20.710 | 0.016 | 0.941 | 0.820 | 0.776 | 0.750 | 0.820 | 0.630 | 0.530 | |
A | 5 | 10 | 0.0001 | 35.899 | 0.015 | 0.969 | 0.927 | 0.915 | 0.904 | 0.927 | 0.953 | 0.226 |
5 | 10 | 0.001 | 37.753 | 0.019 | 0.970 | 0.926 | 0.914 | 0.904 | 0.926 | 0.953 | 0.226 | |
5 | 10 | 0.01 | 36.095 | 0.018 | 0.970 | 0.925 | 0.913 | 0.902 | 0.925 | 0.952 | 0.228 | |
5 | 10 | 0.1 | 50.689 | 0.019 | 0.971 | 0.927 | 0.916 | 0.905 | 0.927 | 0.952 | 0.225 | |
5 | 10 | 1 | 68.317 | 0.020 | 0.964 | 0.911 | 0.883 | 0.860 | 0.911 | 0.947 | 0.272 | |
5 | 10 | 10 | 53.425 | 0.019 | 0.879 | 0.855 | 0.820 | 0.790 | 0.855 | 0.737 | 0.548 | |
A | 10 | 10 | 0.0001 | 42.265 | 0.028 | 0.972 | 0.926 | 0.912 | 0.900 | 0.926 | 0.950 | 0.224 |
10 | 10 | 0.001 | 38.729 | 0.021 | 0.968 | 0.926 | 0.913 | 0.900 | 0.926 | 0.949 | 0.228 | |
10 | 10 | 0.01 | 43.539 | 0.027 | 0.969 | 0.927 | 0.914 | 0.902 | 0.927 | 0.949 | 0.226 | |
10 | 10 | 0.1 | 47.266 | 0.030 | 0.967 | 0.927 | 0.915 | 0.903 | 0.927 | 0.951 | 0.225 | |
10 | 10 | 1 | 46.889 | 0.024 | 0.967 | 0.927 | 0.915 | 0.903 | 0.927 | 0.951 | 0.225 | |
10 | 10 | 10 | 132.933 | 0.025 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.790 | |
A | 1 | 100 | 0.0001 | 177.114 | 0.033 | 0.972 | 0.928 | 0.914 | 0.902 | 0.928 | 0.952 | 0.227 |
1 | 100 | 0.001 | 174.069 | 0.032 | 0.972 | 0.928 | 0.914 | 0.902 | 0.928 | 0.952 | 0.227 | |
1 | 100 | 0.01 | 166.468 | 0.030 | 0.972 | 0.925 | 0.911 | 0.899 | 0.925 | 0.951 | 0.231 | |
1 | 100 | 0.1 | 103.447 | 0.033 | 0.969 | 0.911 | 0.883 | 0.860 | 0.911 | 0.946 | 0.265 | |
1 | 100 | 1 | 68.159 | 0.032 | 0.939 | 0.911 | 0.882 | 0.861 | 0.911 | 0.948 | 0.319 | |
1 | 100 | 10 | 17.931 | 0.028 | 0.943 | 0.796 | 0.744 | 0.721 | 0.796 | 0.564 | 0.524 | |
A | 5 | 100 | 0.0001 | 107.925 | 0.090 | 0.969 | 0.923 | 0.913 | 0.904 | 0.923 | 0.954 | 0.235 |
5 | 100 | 0.001 | 117.054 | 0.084 | 0.969 | 0.926 | 0.914 | 0.903 | 0.926 | 0.952 | 0.235 | |
5 | 100 | 0.01 | 113.997 | 0.094 | 0.970 | 0.927 | 0.915 | 0.905 | 0.927 | 0.953 | 0.230 | |
5 | 100 | 0.1 | 187.261 | 0.090 | 0.972 | 0.925 | 0.914 | 0.903 | 0.925 | 0.954 | 0.232 | |
5 | 100 | 1 | 286.817 | 0.087 | 0.966 | 0.912 | 0.883 | 0.860 | 0.912 | 0.946 | 0.269 | |
5 | 100 | 10 | 123.166 | 0.084 | 0.938 | 0.855 | 0.820 | 0.791 | 0.855 | 0.740 | 0.477 | |
A | 10 | 100 | 0.0001 | 172.370 | 0.153 | 0.969 | 0.918 | 0.904 | 0.892 | 0.918 | 0.946 | 0.246 |
10 | 100 | 0.001 | 162.744 | 0.165 | 0.968 | 0.923 | 0.911 | 0.899 | 0.923 | 0.949 | 0.241 | |
10 | 100 | 0.01 | 190.324 | 0.159 | 0.970 | 0.919 | 0.902 | 0.890 | 0.919 | 0.944 | 0.239 | |
10 | 100 | 0.1 | 190.054 | 0.088 | 0.972 | 0.925 | 0.914 | 0.903 | 0.925 | 0.954 | 0.232 | |
10 | 100 | 1 | 294.704 | 0.085 | 0.966 | 0.912 | 0.883 | 0.860 | 0.912 | 0.946 | 0.269 | |
10 | 100 | 10 | 132.107 | 0.099 | 0.938 | 0.855 | 0.820 | 0.791 | 0.855 | 0.740 | 0.477 | |
A | 1 | 1000 | 0.0001 | 376.896 | 0.153 | 0.971 | 0.927 | 0.913 | 0.901 | 0.927 | 0.952 | 0.227 |
1 | 1000 | 0.001 | 377.893 | 5.242 | 0.971 | 0.926 | 0.913 | 0.901 | 0.926 | 0.952 | 0.227 | |
1 | 1000 | 0.01 | 381.633 | 0.165 | 0.971 | 0.927 | 0.913 | 0.901 | 0.927 | 0.952 | 0.228 | |
1 | 1000 | 0.1 | 393.555 | 0.153 | 0.970 | 0.912 | 0.883 | 0.861 | 0.912 | 0.948 | 0.253 | |
1 | 1000 | 1 | 172.661 | 0.142 | 0.940 | 0.911 | 0.883 | 0.861 | 0.911 | 0.949 | 0.319 | |
1 | 1000 | 10 | 80.511 | 0.150 | 0.942 | 0.829 | 0.789 | 0.760 | 0.829 | 0.673 | 0.523 | |
A | 5 | 1000 | 0.0001 | 3523.763 | 2.005 | 0.967 | 0.908 | 0.899 | 0.891 | 0.908 | 0.94806 | 0.256 |
5 | 1000 | 0.001 | 4215.993 | 2.090 | 0.968 | 0.914 | 0.901 | 0.889 | 0.914 | 0.94573 | 0.253 | |
5 | 1000 | 0.01 | 4812.080 | 2.035 | 0.967 | 0.912 | 0.900 | 0.889 | 0.912 | 0.94658 | 0.249 | |
5 | 1000 | 0.1 | 6389.862 | 2.044 | 0.967 | 0.914 | 0.896 | 0.883 | 0.914 | 0.94518 | 0.243 | |
5 | 1000 | 1 | 7175.113 | 2.049 | 0.957 | 0.911 | 0.882 | 0.860 | 0.911 | 0.94395 | 0.280 | |
5 | 1000 | 10 | 4760.121 | 2.123 | 0.925 | 0.782 | 0.723 | 0.718 | 0.782 | 0.47803 | 0.567 | |
A | 10 | 1000 | 0.0001 | 8451.184 | 4.251 | 0.967 | 0.913 | 0.895 | 0.884 | 0.913 | 0.945 | 0.260 |
10 | 1000 | 0.001 | 7971.356 | 4.504 | 0.960 | 0.906 | 0.890 | 0.876 | 0.906 | 0.915 | 0.289 | |
10 | 1000 | 0.01 | 15,169.579 | 4.909 | 0.960 | 0.908 | 0.895 | 0.883 | 0.908 | 0.940 | 0.281 | |
10 | 1000 | 0.1 | 10,456.199 | 4.993 | 0.960 | 0.892 | 0.885 | 0.880 | 0.892 | 0.941 | 0.297 | |
10 | 1000 | 1 | 15,724.293 | 4.441 | 0.961 | 0.912 | 0.883 | 0.860 | 0.912 | 0.943 | 0.277 | |
10 | 1000 | 10 | 10,937.570 | 4.479 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.794 |
Modality | N | n | α | TT | VT | AUC | CA | F1 | PREC | REC | SPEC | LOSS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 1 | 10 | 0.0001 | 22.730 | 0.014 | 0.900 | 0.847 | 0.818 | 0.791 | 0.847 | 0.800 | 0.454 |
1 | 10 | 0.001 | 22.928 | 0.015 | 0.899 | 0.847 | 0.818 | 0.791 | 0.847 | 0.800 | 0.454 | |
1 | 10 | 0.01 | 22.376 | 0.014 | 0.899 | 0.847 | 0.818 | 0.791 | 0.847 | 0.801 | 0.454 | |
1 | 10 | 0.1 | 24.338 | 0.012 | 0.900 | 0.846 | 0.816 | 0.788 | 0.846 | 0.793 | 0.455 | |
1 | 10 | 1 | 29.579 | 0.016 | 0.884 | 0.844 | 0.812 | 0.783 | 0.844 | 0.769 | 0.473 | |
1 | 10 | 10 | 25.196 | 0.015 | 0.870 | 0.816 | 0.775 | 0.747 | 0.816 | 0.641 | 0.565 | |
S | 5 | 10 | 0.0001 | 31.968 | 0.021 | 0.899 | 0.848 | 0.820 | 0.794 | 0.848 | 0.814 | 0.450 |
5 | 10 | 0.001 | 37.113 | 0.018 | 0.897 | 0.848 | 0.820 | 0.794 | 0.848 | 0.815 | 0.451 | |
5 | 10 | 0.01 | 34.499 | 0.023 | 0.898 | 0.848 | 0.820 | 0.794 | 0.848 | 0.816 | 0.451 | |
5 | 10 | 0.1 | 43.378 | 0.018 | 0.898 | 0.848 | 0.820 | 0.794 | 0.848 | 0.816 | 0.451 | |
5 | 10 | 1 | 61.593 | 0.020 | 0.884 | 0.848 | 0.819 | 0.792 | 0.848 | 0.805 | 0.462 | |
5 | 10 | 10 | 59.856 | 0.023 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.790 | |
S | 10 | 10 | 0.0001 | 34.280 | 0.026 | 0.899 | 0.848 | 0.820 | 0.794 | 0.848 | 0.814 | 0.451 |
10 | 10 | 0.001 | 33.086 | 0.024 | 0.898 | 0.848 | 0.819 | 0.793 | 0.848 | 0.810 | 0.451 | |
10 | 10 | 0.01 | 37.279 | 0.022 | 0.898 | 0.847 | 0.820 | 0.794 | 0.847 | 0.814 | 0.452 | |
10 | 10 | 0.1 | 62.776 | 0.030 | 0.898 | 0.848 | 0.820 | 0.795 | 0.848 | 0.816 | 0.451 | |
10 | 10 | 1 | 113.624 | 0.030 | 0.877 | 0.848 | 0.819 | 0.792 | 0.848 | 0.804 | 0.462 | |
10 | 10 | 10 | 123.910 | 0.023 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.790 | |
S | 1 | 100 | 0.0001 | 28.583 | 0.028 | 0.900 | 0.847 | 0.820 | 0.794 | 0.847 | 0.816 | 0.451 |
1 | 100 | 0.001 | 27.898 | 0.027 | 0.899 | 0.847 | 0.820 | 0.794 | 0.847 | 0.816 | 0.451 | |
1 | 100 | 0.01 | 25.951 | 0.028 | 0.900 | 0.847 | 0.820 | 0.794 | 0.847 | 0.814 | 0.451 | |
1 | 100 | 0.1 | 31.891 | 0.026 | 0.899 | 0.848 | 0.819 | 0.793 | 0.848 | 0.806 | 0.452 | |
1 | 100 | 1 | 49.729 | 0.031 | 0.889 | 0.844 | 0.812 | 0.783 | 0.844 | 0.771 | 0.470 | |
1 | 100 | 10 | 25.909 | 0.025 | 0.870 | 0.816 | 0.775 | 0.747 | 0.816 | 0.641 | 0.561 | |
S | 5 | 100 | 0.0001 | 81.134 | 0.088 | 0.898 | 0.847 | 0.820 | 0.795 | 0.847 | 0.818 | 0.452 |
5 | 100 | 0.001 | 90.476 | 0.089 | 0.898 | 0.847 | 0.819 | 0.794 | 0.847 | 0.815 | 0.452 | |
5 | 100 | 0.01 | 132.277 | 0.090 | 0.899 | 0.847 | 0.819 | 0.792 | 0.847 | 0.807 | 0.451 | |
5 | 100 | 0.1 | 222.879 | 0.088 | 0.898 | 0.847 | 0.818 | 0.792 | 0.847 | 0.808 | 0.454 | |
5 | 100 | 1 | 212.696 | 0.082 | 0.896 | 0.848 | 0.819 | 0.792 | 0.848 | 0.806 | 0.457 | |
5 | 100 | 10 | 133.832 | 0.081 | 0.863 | 0.796 | 0.748 | 0.725 | 0.796 | 0.563 | 0.614 | |
S | 10 | 100 | 0.0001 | 199.142 | 0.165 | 0.899 | 0.847 | 0.818 | 0.792 | 0.847 | 0.807 | 0.453 |
10 | 100 | 0.001 | 208.465 | 0.158 | 0.899 | 0.847 | 0.819 | 0.793 | 0.847 | 0.810 | 0.452 | |
10 | 100 | 0.01 | 328.109 | 0.171 | 0.896 | 0.847 | 0.820 | 0.795 | 0.847 | 0.817 | 0.455 | |
10 | 100 | 0.1 | 498.491 | 0.152 | 0.896 | 0.846 | 0.818 | 0.793 | 0.846 | 0.815 | 0.458 | |
10 | 100 | 1 | 413.117 | 0.176 | 0.888 | 0.847 | 0.819 | 0.793 | 0.847 | 0.811 | 0.462 | |
10 | 100 | 10 | 604.866 | 0.166 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.791 | |
S | 1 | 1000 | 0.0001 | 123.832 | 0.168 | 0.898 | 0.848 | 0.820 | 0.793 | 0.848 | 0.810 | 0.453 |
1 | 1000 | 0.001 | 117.616 | 0.144 | 0.898 | 0.848 | 0.820 | 0.793 | 0.848 | 0.810 | 0.453 | |
1 | 1000 | 0.01 | 122.734 | 0.162 | 0.898 | 0.848 | 0.820 | 0.793 | 0.848 | 0.810 | 0.453 | |
1 | 1000 | 0.1 | 135.329 | 0.155 | 0.899 | 0.848 | 0.819 | 0.792 | 0.848 | 0.805 | 0.453 | |
1 | 1000 | 1 | 125.781 | 0.159 | 0.889 | 0.844 | 0.813 | 0.785 | 0.844 | 0.776 | 0.471 | |
1 | 1000 | 10 | 141.933 | 0.141 | 0.871 | 0.819 | 0.779 | 0.750 | 0.819 | 0.655 | 0.556 | |
S | 5 | 1000 | 0.0001 | 3967.578 | 2.070 | 0.897 | 0.847 | 0.819 | 0.793 | 0.847 | 0.814 | 0.456 |
5 | 1000 | 0.001 | 6176.544 | 2.029 | 0.899 | 0.848 | 0.820 | 0.794 | 0.848 | 0.814 | 0.452 | |
5 | 1000 | 0.01 | 6545.242 | 2.077 | 0.900 | 0.848 | 0.819 | 0.793 | 0.848 | 0.810 | 0.452 | |
5 | 1000 | 0.1 | 5265.886 | 2.064 | 0.893 | 0.847 | 0.820 | 0.795 | 0.847 | 0.818 | 0.461 | |
5 | 1000 | 1 | 8161.303 | 2.186 | 0.886 | 0.848 | 0.819 | 0.792 | 0.848 | 0.800 | 0.463 | |
5 | 1000 | 10 | 4835.667 | 2.274 | 0.811 | 0.759 | 0.686 | 0.688 | 0.759 | 0.409 | 0.681 | |
S | 10 | 1000 | 0.0001 | 9320.816 | 4.993 | 0.897 | 0.846 | 0.818 | 0.792 | 0.846 | 0.806 | 0.458 |
10 | 1000 | 0.001 | 17,128.945 | 4.442 | 0.897 | 0.848 | 0.820 | 0.794 | 0.848 | 0.814 | 0.455 | |
10 | 1000 | 0.01 | 14,130.691 | 3.850 | 0.894 | 0.847 | 0.819 | 0.793 | 0.847 | 0.813 | 0.456 | |
10 | 1000 | 0.1 | 13,607.806 | 4.461 | 0.898 | 0.847 | 0.819 | 0.793 | 0.847 | 0.812 | 0.454 | |
10 | 1000 | 1 | 12,868.969 | 3.838 | 0.884 | 0.844 | 0.817 | 0.793 | 0.844 | 0.817 | 0.488 | |
10 | 1000 | 10 | 11,687.663 | 4.818 | 0.500 | 0.726 | 0.611 | 0.527 | 0.726 | 0.274 | 0.794 |
References
- Mologni, O.; Dyson, P.; Amishev, D.; Proto, A.R.; Zimbalatti, G.; Cavalli, R.; Grigolato, S. Tensile Force Monitoring on Large Winch-Assist Forwarders Operating in British Columbia. Croat. J. For. Eng. 2018, 39, 193–204. [Google Scholar]
- Stoilov, S.; Proto, A.R.; Angelov, G.; Papandrea, S.F.; Borz, S.A. Evaluation of salvage logging productivity and costs in the sensitive forests of Bulgaria. Forests 2021, 12, 309. [Google Scholar] [CrossRef]
- Casado, M.; Acuña, L.; Basterra, L.A.; Ramón-Cueto, G.; Vecilla, D. Grading of structural timber of Populus×euramericana clone I-214. Holzforschung 2012, 66, 633–638. [Google Scholar] [CrossRef]
- Papandrea, S.F.; Cataldo, M.F.; Bernardi, B.; Zimbalatti, G.; Proto, A.R. The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests 2022, 13, 1273. [Google Scholar] [CrossRef]
- Industrial Applications of Poplar Wood. Available online: https://propopulus.eu/en/industrial-applications-of-poplar-wood/ (accessed on 1 October 2024).
- Dickmann, D.I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass Bioenerg. 2006, 30, 696–705. [Google Scholar] [CrossRef]
- Marogel-Popa, T.; Cheţa, M.; Marcu, M.V.; Duţă, I.C.; Ioraş, F.; Borz, S.A. Manual cultivation operations in poplar stands: A characterization of job difficulty and risks of health impairment. Int. J. Environ. Res. Public Health 2019, 16, 1911. [Google Scholar] [CrossRef]
- Zhai, S.; Shi, Y.; Zhou, J.; Liu, J.; Huang, D.; Zou, A.; Jiang, P. Simulation Optimization and Experimental Study of the Working Performance of a Vertical Rotary Tiller Based on the Discrete Element Method. Actuators 2022, 11, 342. [Google Scholar] [CrossRef]
- Keefe, R.F.; Zimbelman, E.G.; Wempe, A.M. Use of smartphone sensors to quantify the productive cycle elements of hand fallers on industrial cable logging operations. Int. J. For. Eng. 2019, 30, 132–143. [Google Scholar] [CrossRef]
- Becker, R.M.; Keefe, R.F. A novel smartphone-based activity recognition modelling method for tracked equipment in forest operations. PLoS ONE 2022, 17, e0266568. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Chen, M.; Ji, M.; Diao, X.; Miao, H. Enhancing Sustainable Afforestation through Innovative Earth Auger Design: A Simulation Study in Hilly Regions. Sustainability 2024, 16, 5402. [Google Scholar] [CrossRef]
- Tampekis, S.; Kantartzis, A.; Arabatzis, G.; Sakellariou, S.; Kolkos, G.; Malesios, C. Conceptualizing Forest Operations Planning and Management Using Principles of Functional Complex Systems Science to Increase the Forest’s Ability to Withstand Climate Change. Land 2024, 13, 217. [Google Scholar] [CrossRef]
- Hiesl, P.; Benjamin, J.G. Applicability of international harvesting equipment productivity studies in Maine, U.S.A.: A literature review. Forests 2013, 4, 898–921. [Google Scholar] [CrossRef]
- Demsar, J.; Curk, T.; Erjavec, A.; Gorup, C.; Hocevar, T.; Milutinovic, M.; Mozina, M.; Polajnar, M.; Toplak, M.; Staric, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Building A Neural Net from Scratch Using R—Part 1. Available online: https://rviews.rstudio.com/2020/07/20/shallow-neural-net-from-scratch-using-r-part-1/ (accessed on 23 July 2024).
- Python AI: How to Build a Neural Network & Make Predictions. Available online: https://realpython.com/python-ai-neural-network/ (accessed on 23 July 2024).
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview, challenges and opportunities. J. ACM 2021, 77, 1–40. [Google Scholar] [CrossRef]
- Acuna, M.; Bigot, M.; Guerra, S.; Hartsough, B.; Kanzian, C.; Kärhä, K.; Lindroos, O.; Magagnotti, N.; Roux, S.; Spinelli, R.; et al. Good Practice Guidelines for Biomass Production Studies; CNR IVALSA Sesto Fiorentino (National Research Council of Italy—Trees and Timber Institute): Sesto Fiorentino, Italy, 2012; 52p. [Google Scholar]
- Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural Science, Department of Operational Efficiency: Grapenberg, Sweden, 1995; 16p. [Google Scholar]
- Ruiz-Garcia, L.; Sanchez-Guerrero, P. A Decision Support Tool for Buying Farm Tractors, Based on Predictive Analytics. Agriculture 2022, 12, 331. [Google Scholar] [CrossRef]
- Lanças, K.P.; Marques Filho, A.C.; Santana, L.S.; Ferraz, G.A.e.S.; Faria, R.O.; Martins, M.B. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering 2024, 6, 2229–2248. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Šarkoćević, Ž.; Golubović, Z.; Ristić, V.; Stojanović, I. Evaluation of Agricultural Machinery Using Multi-Criteria Analysis Methods. Sustainability 2022, 14, 8675. [Google Scholar] [CrossRef]
- Bacescu, N.M.; Cadei, A.; Moskalik, T.; Wisniewski, M.; Talbot, B.; Grigolato, S. Efficiency assessment of fully mechanized harvesting system through the use of fleet management system. Sustainability 2022, 14, 16751. [Google Scholar] [CrossRef]
- Spinelli, R.; Laina-Relano, R.; Magagnotti, N.; Tolosana, E. Determining observer and method effects on the accuracy of elemental time studies in forest operations. Balt. For. 2013, 19, 301–306. [Google Scholar]
- Musat, E.C.; Apafaian, A.I.; Ignea, G.; Ciobanu, V.D.; Iordache, E.; Derczeni, R.A.; Spârchez, G.; Vasilescu, M.M.; Borz, S.A. Time expenditure in computer aided time studies implemented for highly mechanized forest equipment. Ann. For. Res. 2016, 59, 129–143. [Google Scholar]
- Borz, S.A. Development of a modality-invariant multi-layer perceptron to predict operational events in motor-manual willow felling operations. Forests 2021, 12, 406. [Google Scholar] [CrossRef]
- Borz, S.A.; Talagai, N.; Cheţa, M.; Chiriloiu, D.; Gavilanes Montoya, A.V.; Castillo Vizuete, D.D.; Marcu, M.V. Physical strain, exposure to noise and postural assessment in motor-manual felling of willow short rotation coppice: Results of a preliminary study. Croat. J. For. Eng. 2019, 40, 377–388. [Google Scholar] [CrossRef]
- Borz, S.A.; Cheta, M.; Birda, M.; Proto, A.R. Classifying operational events in cable yarding by a machine learning application to GNSS-collected data: A case study on gravity-assisted downhill yarding. Bull. Transilv. Univ. Bras. 2022, 15, 13–32. [Google Scholar] [CrossRef]
- Şofletea, N.; Curtu, L. Dendrologie, 2nd ed.; Pentru Viaţă Publishing House: Braşov, Romania, 2008; ISBN 978-973-85874-4-1. [Google Scholar]
- Abrudan, I.V. Împăduriri; Transilvania University Press: Braşov, Romania, 2006. [Google Scholar]
- Florescu, I.; Nicolescu, N.V. Silviculture; Lux Libris Publishing House: Brasov, Romania, 1996. [Google Scholar]
- Castro Pérez, S.N.; Borz, S.A. Improving the event-based classification accuracy in pit-drilling operations: An application by neural networks and median filtering of the acceleration input signal data. Sensors 2021, 21, 6288. [Google Scholar] [CrossRef]
- Ministry of Waters, Forests and Environment Protection; National Forest Administration. Unified Work Time and Production Rates for Forestry, Ministry of Waters; Forests and Environment Protection: Bucharest, Romania, 1997. [Google Scholar]
- Spinelli, R.; Visser, R.J.M. Analyzing and estimating delays in wood chipping operations. Biomass Bioenergy 2009, 33, 429–433. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Kingma, D.P.; Ba, J.L. 2015: ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldu, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Cross Validation in Machine Learning. Available online: https://www.geeksforgeeks.org/cross-validation-machine-learning/ (accessed on 23 July 2024).
- 5 Reasons Why You Should Use Cross-Validation in Your Data Science Projects. Available online: https://towardsdatascience.com/5-reasons-why-you-should-use-cross-validation-in-your-data-science-project-8163311a1e79 (accessed on 23 July 2024).
- Bulling, A.; Blanke, U.; Schiele, B. A tutorial of human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 2014, 46, 1–33. [Google Scholar] [CrossRef]
- Borz, S.A.; Forkuo, G.O.; Oprea-Sorescu, O.; Proto, A.R. Development of a robust machine learning model to monitor the operational performance of fixed-post multi-blade vertical sawing machines. Forests 2022, 13, 1115. [Google Scholar] [CrossRef]
- Marogel-Popa, T. Performance of Planting and Cultivation Operations in Poplar Forests Located in the Danube Meadow. Ph.D. Thesis, Transilvania University of Brasov, 2020. Available online: https://www.unitbv.ro/documente/cercetare/doctorat-postdoctorat/sustinere-teza/2020/marogel-tiberiu/REZUMAT_TEZA_DOCTORAT_MAROGEL-POPA_TIBERIU.pdf (accessed on 6 August 2024).
- Neural Network. Available online: https://orangedatamining.com/widget-catalog/model/neuralnetwork/ (accessed on 6 August 2024).
- Normalization vs Standardization. Available online: https://www.geeksforgeeks.org/normalization-vs-standardization/ (accessed on 6 August 2024).
- Talagai, N.; Marcu, M.V.; Zimbalatti, G.; Proto, A.R.; Borz, S.A. Productivity in partly mechanized planting operations of willow short rotation coppice. Biomass Bioenergy 2020, 138, 105609. [Google Scholar] [CrossRef]
- Manzone, M.; Balsari, P. Planters performance during a very short rotation coppice planting. Biomass Bioenergy 2014, 67, 188–192. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G.; Balsari, P. A prototype for horizontal long cuttings planting in short rotation coppice. Biomass Bioenergy 2017, 107, 214–218. [Google Scholar] [CrossRef]
- Bush, C.; Volk, T.A.; Eisenbies, M.H. Planting rates and delays during the establishment of willow biomass crops. Biomass Bioenergy 2015, 83, 290–296. [Google Scholar] [CrossRef]
- Borz, S.A.; Nita, M.D.; Talagai, N.; Scriba, C.; Grigolato, S.; Proto, A.R. Performance of small-scale technology in planting and cutback operations of short-rotation willow crops. Trans. ASABE 2019, 62, 167–176. [Google Scholar] [CrossRef]
Event | Abbreviation Used for Annotation | Description |
---|---|---|
Active work | WORK | The tractor moves and powers the tiller which is used to remove the weed and till the soil. Conventionally, tiller disengagement was included in this category. |
Maneuvering | MAN | Includes the exit and entering maneuvers, maneuvers taken in the plot, and very short stops (couple of seconds) in the plot. Tiller was disengaged during these events. |
No movement, engine on | STOP | The tractor is stopped with the engine running for longer periods of time. |
No movement, engine off | OFF | The tractor is stopped with the engine turned off, typically at the headland and at the beginning and end of the working day. |
Modality and Dataset | Optimal Architecture and Hyperparameters | Event Class | AUC | CA | F1 | PREC | REC | SPEC | LOSS |
---|---|---|---|---|---|---|---|---|---|
AS, DS1 | N = 1, n = 1000, α = 0.001, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.986 | 0.930 | 0.917 | 0.906 | 0.930 | 0.964 | 0.191 |
WORK | 0.986 | 0.930 | 0.917 | 0.906 | 0.930 | 0.964 | 0.191 | ||
MAN | 0.998 | 0.982 | 0.987 | 0.987 | 0.987 | 0.966 | 0.048 | ||
STOP | 0.984 | 0.942 | 0.868 | 0.816 | 0.927 | 0.946 | 0.131 | ||
OFF | 0.939 | 0.970 | 0.000 | 0.000 | 0.000 | 1.000 | 0.084 | ||
A, DS1 | N = 1, n = 100, α = 0.001, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.972 | 0.928 | 0.914 | 0.902 | 0.928 | 0.952 | 0.227 |
WORK | 0.985 | 0.978 | 0.985 | 0.981 | 0.989 | 0.950 | 0.080 | ||
MAN | 0.972 | 0.942 | 0.867 | 0.819 | 0.921 | 0.948 | 0.154 | ||
STOP | 0.924 | 0.970 | 0.000 | 0.000 | 0.000 | 1.000 | 0.088 | ||
OFF | 0.948 | 0.965 | 0.558 | 0.566 | 0.549 | 0.983 | 0.086 | ||
S, DS1 | N = 5, n = 1000, α = 1, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.886 | 0.848 | 0.819 | 0.792 | 0.848 | 0.800 | 0.463 |
WORK | 0.918 | 0.911 | 0.941 | 0.913 | 0.971 | 0.755 | 0.268 | ||
MAN | 0.853 | 0.855 | 0.665 | 0.630 | 0.703 | 0.894 | 0.343 | ||
STOP | 0.885 | 0.970 | 0.000 | 0.000 | 0.000 | 1.000 | 0.099 | ||
OFF | 0.878 | 0.960 | 0.000 | 0.000 | 0.000 | 1.000 | 0.120 |
Modality and Dataset | Optimal Architecture and Hyperparameters | Event Class | AUC | CA | F1 | PREC | REC | SPEC | LOSS |
---|---|---|---|---|---|---|---|---|---|
AS, DS2 | N = 1, n = 1000, α = 0.001, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.984 | 0.906 | 0.922 | 0.946 | 0.906 | 0.985 | 0.187 |
WORK | 0.998 | 0.906 | 0.988 | 0.998 | 0.977 | 0.995 | 0.187 | ||
MAN | 0.976 | 0.906 | 0.814 | 0.882 | 0.755 | 0.962 | 0.187 | ||
OFF | 0.927 | 0.906 | 0.250 | 0.165 | 0.518 | 0.933 | 0.187 | ||
A, DS2 | N = 1, n = 100, α = 0.001, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.981 | 0.922 | 0.931 | 0.943 | 0.922 | 0.976 | 0.188 |
WORK | 0.995 | 0.922 | 0.984 | 0.993 | 0.976 | 0.983 | 0.188 | ||
MAN | 0.974 | 0.922 | 0.852 | 0.881 | 0.825 | 0.958 | 0.188 | ||
OFF | 0.921 | 0.922 | 0.283 | 0.206 | 0.447 | 0.956 | 0.188 | ||
S, DS2 | N = 5, n = 1000, α = 1, Activation function = ReLU, solver = ADAM, number of iterations = 1,000,000, stratified cross-validation by 10 folds. | OVERALL | 0.902 | 0.901 | 0.887 | 0.876 | 0.901 | 0.836 | 0.352 |
WORK | 0.916 | 0.901 | 0.948 | 0.917 | 0.981 | 0.787 | 0.352 | ||
MAN | 0.892 | 0.901 | 0.811 | 0.852 | 0.774 | 0.950 | 0.352 | ||
OFF | 0.868 | 0.901 | 0.000 | 0.000 | 0.000 | 1.000 | 0.352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borz, S.A.; Proto, A.R. Predicting Operational Events in Mechanized Weed Control Operations by Offline Multi-Modal Data and Machine Learning Provides Highly Accurate Classification in Time Domain. Forests 2024, 15, 2019. https://doi.org/10.3390/f15112019
Borz SA, Proto AR. Predicting Operational Events in Mechanized Weed Control Operations by Offline Multi-Modal Data and Machine Learning Provides Highly Accurate Classification in Time Domain. Forests. 2024; 15(11):2019. https://doi.org/10.3390/f15112019
Chicago/Turabian StyleBorz, Stelian Alexandru, and Andrea Rosario Proto. 2024. "Predicting Operational Events in Mechanized Weed Control Operations by Offline Multi-Modal Data and Machine Learning Provides Highly Accurate Classification in Time Domain" Forests 15, no. 11: 2019. https://doi.org/10.3390/f15112019
APA StyleBorz, S. A., & Proto, A. R. (2024). Predicting Operational Events in Mechanized Weed Control Operations by Offline Multi-Modal Data and Machine Learning Provides Highly Accurate Classification in Time Domain. Forests, 15(11), 2019. https://doi.org/10.3390/f15112019