Prediction of Wildfire Occurrence in the Southern Forest Regions of China in the Future Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data and Methods
2.2.1. Technical Workflow
- (i)
- Analysis of spatial heterogeneity characteristics: Advanced spatial autocorrelation methods are employed to analyze forest fire data from the past 20 years. This step aims to reveal the spatial distribution patterns, clustering characteristics, and potential spatial association patterns of fire activities, laying a solid foundation for subsequent comprehensive analysis and prediction.
- (ii)
- Integration of multisource data and spatial distribution analysis: Using MODIS fire data from 2001 to 2020, this study integrates various data dimensions, including meteorological conditions (temperature, humidity, wind speed, etc.), vegetation types and coverage, topographical features (elevation, slope, aspect, etc.), and human activity factors (population density, agricultural activities, tourism development, etc.). A comprehensive analysis of the spatial distribution of wildfires under the current climatic conditions in China is conducted, and a predictive model is developed to better understand future fire occurrence trends.
- (iii)
- Ensemble learning model development and performance evaluation: To enhance prediction accuracy, an optimal ensemble learning model is designed and constructed. This model integrates various influencing factors to accurately predict forest fire occurrences. Its performance is thoroughly assessed using internationally recognized metrics, including recall, F1 score, accuracy, and AUC (Area Under the Curve), to ensure reliability and effectiveness in practical applications.
- (iv)
- Forecasting forest fires based on future change scenarios: Utilizing the advanced BCC-CSM2-MR climate model, two representative greenhouse gas emission scenarios—SSP126 (low-emission scenario) and SSP585 (high-emission scenario)—are selected. The optimal ensemble learning model is employed to predict and map the distribution of forest fire risks in the southern forest region under future climatic changes across various timeframes. This approach provides a scientific foundation for forestry management and fire prevention, offering essential decision support for tackling forest fire challenges amid global climate change.
2.2.2. Spatial Autocorrelation
2.2.3. Construction of Predictive Models
2.2.4. Evaluation of Model Performance
3. Results
3.1. Distribution Map of Forest Fire Occurrences Based on Current Climate Conditions
3.2. Evaluation of the Spatial Patterns Associated with Wildfires
3.3. Prediction Performance Evaluation
3.4. Prediction and Zoning of Forest Fire Occurrence in Future Scenarios
4. Discussion
5. Conclusions
- (i)
- By leveraging detailed fire point data spanning two decades and incorporating spatial autocorrelation analysis, we uncovered notable patterns of spatial heterogeneity in forest fire occurrences.
- (ii)
- Our findings reveal distinct clusters of cities with varying levels of fire risk within the southern forest region. Furthermore, the innovative use of the LR-RF-SVM ensemble model proved highly effective, surpassing the performance of individual models in predicting wildfires. This underscores the advantages of integrating multiple machine learning techniques to enhance prediction accuracy.
- (iii)
- Looking to the future, our predictions based on two climate change scenarios indicate a concerning trend of expanding forest fire risk, particularly in previously low-risk areas. This highlights the urgent need for proactive management strategies to mitigate the impacts of climate change on forest fire occurrence.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Agnoletti, M.; Piras, F.; Venturi, M.; Santoro, A. Cultural values and forest dynamics: The Italian forests in the last 150 years. For. Ecol. Manag. 2022, 503, 119655. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the geographical environment and the forest carbon sink capacity in China based on an individual-tree growth-rate model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Ying, L.; Han, J.; Du, Y.; Shen, Z. Forest fire characteristics in China: Spatial patterns and determinants with thresholds. For. Ecol. Manag. 2018, 424, 345–354. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, G.; Feng, Z.; Sun, L.; Yang, X.; Ma, T.; Li, X.; Fu, H.; Wang, A. Prediction of forest fire occurrence in China under climate change scenarios. J. For. Res. 2023, 34, 1217–1228. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Change Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Farfan, M.; Dominguez, C.; Espinoza, A.; Jaramillo, A.; Alcantara, C.; Maldonado, V.; Tovar, I.; Flamenco, A. Forest fire probability under ENSO conditions in a semi-arid region: A case study in Guanajuato. Environ. Monit. Assess. 2021, 193, 684. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, X.; Yao, Q.; Fang, K. ENSO modulates interaction between forest insect and fire disturbances in China. Nat. Hazard. Res. 2022, 2, 138–146. [Google Scholar] [CrossRef]
- Allen, M.; Dube, O.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M. Special Report: Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018; p. 677. [Google Scholar]
- Brown, T.P.; Duff, T.J.; Inbar, A.; Lane, P.N.J.; Sheridan, G.J. Forest reorganisation effects on fuel moisture content can exceed changes due to climate warming in wet temperate forests. Glob. Chang. Biol. 2024, 30, e17023. [Google Scholar] [CrossRef] [PubMed]
- Manuel Galván Ortiz, L.; Antonio Ávalos Lozano, J. Regional Climate Change as a Driver in Wildfires. In Climate Change and Environmental Sustainability—Annual Volume 2024; Sustainable Development; IntechOpen: London, UK, 2024. [Google Scholar]
- Zivanovic, S.; Gocic, M. The Influence of Climatic Conditions on the Occurrence of Large Wildfires: A Case Study of Stara Planina Nature Park in 2007 and 2019. J. Appl. Life Sci. Environ. 2023, 56, 195–209. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, H.V.; Hoang, N.-D. GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecol. Inf. 2018, 48, 104–116. [Google Scholar] [CrossRef]
- Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A Brief Review of Machine Learning Algorithms in Wildfires Science. Appl. Sci. 2023, 13, 8275. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Chaudhary, S.; Yadav, S.; Kushwaha, S.; Shahi, S.R.P. A brief review of machine learning and its applications. Samriddhi A J. Phys. Sci. Eng. Technol. 2020, 12, 218–223. [Google Scholar]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I. Detection rates of the MODIS active fire product in the United States. Remote Sens. Environ. 2008, 112, 2656–2664. [Google Scholar] [CrossRef]
- Hantson, S.; Padilla, M.; Corti, D.; Chuvieco, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens. Environ. 2013, 131, 152–159. [Google Scholar] [CrossRef]
- Yi, L.; Xiong, L.-Y.; Yang, X. Method of pixelizing GDP data based on the GIS. J. Gansu Sci. 2006, 18, 54–58. [Google Scholar]
- Liu, H.; Jiang, D.; Yang, X.; Luo, C. Spatialization approach to 1 km grid GDP supported by remote sensing. Geo-Inf. Sci. 2005, 7, 120–123. [Google Scholar]
- He, Q.; Wang, M.; Liu, K.; Li, K.; Jiang, Z. GPRChinaTemp1km: A high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth Syst. Sci. Data 2022, 14, 3273–3292. [Google Scholar] [CrossRef]
- Qu, L.; Zhu, Q.; Zhu, C.; Zhang, J. Monthly precipitation data set with 1 km resolution in China from 1960 to 2020. Sci. Data Bank 2022. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, G.; Yang, Z.; Tan, S.; Yang, Y.; Pang, Z. Machine Learning for Predicting Forest Fire Occurrence in Changsha: An Innovative Investigation into the Introduction of a Forest Fuel Factor. Remote Sens. 2023, 15, 4208. [Google Scholar] [CrossRef]
- Chen, Y. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Fu, W.J.; Jiang, P.K.; Zhou, G.M.; Zhao, K.L. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef]
- Bivand, R.S.; Wong, D.W.S. Comparing implementations of global and local indicators of spatial association. TEST 2018, 27, 716–748. [Google Scholar] [CrossRef]
- Song, W.; Wang, C.; Chen, W.; Zhang, X.; Li, H.; Li, J. Unlocking the spatial heterogeneous relationship between Per Capita GDP and nearby air quality using bivariate local indicator of spatial association. Resour. Conserv. Recycl. 2020, 160, 104880. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Liu, F.; Wang, C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int. J. Med. Inform. 2021, 151, 104484. [Google Scholar] [CrossRef] [PubMed]
- Schuster, N.A.; Twisk, J.W.R.; Ter Riet, G.; Heymans, M.W.; Rijnhart, J.J.M. Noncollapsibility and its role in quantifying confounding bias in logistic regression. BMC Med. Res. Methodol. 2021, 21, 136. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Jevšenak, J.; Skudnik, M. A random forest model for basal area increment predictions from national forest inventory data. For. Ecol. Manag. 2021, 479, 118601. [Google Scholar] [CrossRef]
- Wojtowicz, A.; Piekarczyk, J.; Czernecki, B.; Ratajkiewicz, H. A random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scale. J. Photochem. Photobiol. B 2021, 223, 112278. [Google Scholar] [CrossRef]
- Tanveer, M.; Rajani, T.; Rastogi, R.; Shao, Y.-H.; Ganaie, M. Comprehensive review on twin support vector machines. Ann. Oper. Res. 2022, 339, 1223–1268. [Google Scholar] [CrossRef]
- Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [Google Scholar] [CrossRef]
- Bhavsar, H.; Panchal, M.H. A review on support vector machine for data classification. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2012, 1, 185–189. [Google Scholar]
- Wardhani, N.W.S.; Rochayani, M.Y.; Iriany, A.; Sulistyono, A.D.; Lestantyo, P. Cross-validation Metrics for Evaluating Classification Performance on Imbalanced Data. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 14–18. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Imran, A.A.; Amin, M.N.; Johora, F.T. Classification of Chronic Kidney Disease using Logistic Regression, Feedforward Neural Network and Wide & Deep Learning. In Proceedings of the 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 27–28 December 2018; pp. 1–6. [Google Scholar]
- Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest Fire Occurrence Prediction in China Based on Machine Learning Methods. Remote Sens. 2022, 14, 5546. [Google Scholar] [CrossRef]
- Carta, F.; Zidda, C.; Putzu, M.; Loru, D.; Anedda, M.; Giusto, D. Advancements in Forest Fire Prevention: A Comprehensive Survey. Sensors 2023, 23, 6635. [Google Scholar] [CrossRef] [PubMed]
- Giannakidou, S.; Radoglou-Grammatikis, P.; Lagkas, T.; Argyriou, V.; Goudos, S.; Markakis, E.K.; Sarigiannidis, P. Leveraging the power of internet of things and artificial intelligence in forest fire prevention, detection, and restoration: A comprehensive survey. Internet Things 2024, 26, 101171. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Z.; Feng, Z.; Sun, L.; Yang, X.; Zheng, J.; Ma, T. Assessment of China’s forest fire occurrence with deep learning, geographic information and multisource data. J. For. Res. 2022, 34, 963–976. [Google Scholar] [CrossRef]
- Preeti, T.; Kanakaraddi, S.; Beelagi, A.; Malagi, S.; Sudi, A. Forest Fire Prediction Using Machine Learning Techniques. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–6. [Google Scholar]
- Amiri, M.; Pourghasemi, H.R. Predicting areas affected by forest fire based on a machine learning algorithm. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 351–362. [Google Scholar]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- George, J.S.; Thomas, J.E.; Thomas, M.G.; Thomas, R.G. Fire Safety Alert System in Forest and Rural Areas. In Proceedings of the 2nd International Conference on IoT Based Control Networks & Intelligent Systems—ICICNIS 2021, Kerala, India, 28–29 June 2021. [Google Scholar]
- Naing, Y.; Lai Thein, T.L. Forest Fire Detection and Warning System for Disaster Prevention. In Proceedings of the 2023 IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar, 27–28 February 2023; pp. 135–139. [Google Scholar]
- Abdessemed, F.; Bouam, S.; Arar, C. A Review on Forest Fire Detection and Monitoring Systems. In Proceedings of the 2023 International Conference on Electrical Engineering and Advanced Technology (ICEEAT), Batna, Algeria, 5–7 November 2023; pp. 1–7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Huang, D.; Long, B.; Shao, Y.; Xiao, M.; Sun, L.; Li, X.; Wang, A.; Chen, X.; Li, W. Prediction of Wildfire Occurrence in the Southern Forest Regions of China in the Future Scenario. Forests 2024, 15, 2029. https://doi.org/10.3390/f15112029
Li J, Huang D, Long B, Shao Y, Xiao M, Sun L, Li X, Wang A, Chen X, Li W. Prediction of Wildfire Occurrence in the Southern Forest Regions of China in the Future Scenario. Forests. 2024; 15(11):2029. https://doi.org/10.3390/f15112029
Chicago/Turabian StyleLi, Jing, Duan Huang, Beiping Long, Yakui Shao, Mengwei Xiao, Linhao Sun, Xusheng Li, Aiai Wang, Xuanchi Chen, and Weike Li. 2024. "Prediction of Wildfire Occurrence in the Southern Forest Regions of China in the Future Scenario" Forests 15, no. 11: 2029. https://doi.org/10.3390/f15112029
APA StyleLi, J., Huang, D., Long, B., Shao, Y., Xiao, M., Sun, L., Li, X., Wang, A., Chen, X., & Li, W. (2024). Prediction of Wildfire Occurrence in the Southern Forest Regions of China in the Future Scenario. Forests, 15(11), 2029. https://doi.org/10.3390/f15112029