Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests
Abstract
:1. Introduction
- How does multi-aged forest management influence biodiversity and forest structure compared to even-aged forests?
- What is the impact of historic management practices on current biodiversity and structural elements?
- How do recent management interventions affect deadwood volumes and species composition?
- How does conservation status contribute to biodiversity preservation in Estonian forests?
2. Material and Methods
2.1. Study Region and Sample Plots
2.2. Management History Assessment
2.3. Data Analysis
2.4. Manuscript Preparation
3. Results
3.1. Environmental Envelope
3.2. Influence of Stand Origin on Forest Structure and Biodiversity
3.3. Impact of Historical Management
3.4. Effects of Recent Management
3.5. Protected Areas Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Forest Management Activities (Detectable) | |||
Forest Age (Years) | HISTORICAL | Forest Age (Years) | RECENT |
up to 10 | Early tending (weed & release) | up to 10 | Early tending (weed & release) |
up to 10 | Early tending (cleaning) | up to 20 | Precommercial thin |
from 11–20 | Precommercial thin | from 20-mature stand | Commercial thin |
from 21–40 | Commercial thin | all ages | Sanitation cut |
from 41–… | Selection thin | in mature stand | Selective cut |
from 60–… | Sanitation cut | in mature stand | Clearcut |
in mature stand | Selective cut (single tree) | in mature stand | Shelterwood cut |
in mature stand | Clearcut | after clearcut | Seed tree harvest |
after clearcut | Seed tree harvest | ||
Other Activities (Undetectable) | |||
Forest Age (Years) | HISTORICAL | Forest Age (Years) | RECENT |
all ages | bud picking | all ages | hiking |
all ages | seed collection | all ages | berry/mushroom picking |
all ages | cone harvesting | all ages | herb picking |
all ages | grazing | all ages | active vacation |
all ages | firewood stock | ||
all ages | Household facilities (stick cutting; bath broom; besom etc.) | ||
all ages | berry/mushroom picking | ||
all ages | herb picking | ||
from 10–30 | Trimming (prune) | ||
CONSERVATION | |||
HISTORICAL | RECENT | ||
reserve coupe | water protection zone | ||
road protection zone | protection area (natural) | ||
water protection zone | protection area (maintenance) | ||
esthetical/recreation forests | buffer zone | ||
landscape protection areas | reservation area | ||
nature conservation area/nature preserve | key habitat protection |
Appendix B
Map Types |
Estonia/Rücker Livonia by Schmidt map (1884) |
Verst map from the Russian Empire (1891–1912. scale 1:42,000) |
Cadastral maps of the Estonian Republic (1930–1944. scale 1:42/50,000) |
Topographic maps of Estonia (1923–1939. 1:50,000) |
Soviet topographic maps (1942 reference system) in scales 1:10,000. 1:25,000. 1:50,000. 1:100,000. 1:200,000. 1: 300,000. 1:500,000. 1:1 000,000; all printed between 1946 and 1989. 1:100,000 printed between 1898 and 1989 |
Soviet topographic maps (1963 reference system) in scales 1:10,000 and 1:25,000 (printed between 1966 and 1987) |
Estonian Base Map 1:50,000 (1994–1998) |
Map of Estonia 1:50,000 (ordered by Estonian Defense Forces 1997–2003) |
Estonian Basic Map 1:10,000 yearly versions (1996–2007 and since 2009 to nowadays) |
Estonian Basic Map 1:20,000 (paper version. printed between 1994 and 2022) |
Cadastral maps (schematic map 1930–1944. 1978–1989) |
Soil map. Land Board 2001 |
Aerial photos and models |
Arial photo archives (since the 1940s–1992) |
Photo plans (1942–1991) |
Land Board Orthophotos (2002–2022) |
Historical satellite images (since 1965–1993) |
Land Board Elevation Data 2017–2020 (height points. contours. depth points. depth contours) |
Canopy Height Model—CHM |
Digital Surface Model—DSM; visible in zoon scales 0 to 24,000) |
Hillshading (2008–2012. 2012–2015) |
Digital terrain model (2011–2014) |
Appendix C
Abbreviation | Variables | Unit | Average | Standard Dev. | Lower Quartile | Median | Higher Quartile |
Tree Diam | diameter (DBH) of canopy trees | cm | 36.3 | 5.2 | 32.6 | 35.4 | 39.1 |
G.total | Basal area of trees over 5 m of height | m2 ha−1 | 36.9 | 8.5 | 31.7 | 37.2 | 42.1 |
Vol.total | Volume of trees over 5 m of height | m3 ha−1 | 478.8 | 127.7 | 386.2 | 472.8 | 557.7 |
G.I | Basal area of canopy trees | m2 ha−1 | 30.9 | 8.1 | 26.4 | 30.8 | 35.9 |
Vol.I | Volume of canopy trees | m3 ha−1 | 423.2 | 123.0 | 335.4 | 420.3 | 502.9 |
G.II | Basal area of sub-canopy trees (trees reaching height of 25–75% of canopy layer) | m2 ha−1 | 6.0 | 3.1 | 3.8 | 5.3 | 8.0 |
Vol.II | Volume of sub-canopy trees (trees reaching height of 25–75% of canopy layer) | m3 ha−1 | 55.6 | 30.5 | 31.9 | 49.0 | 74.0 |
All Decid% | Percentage of deciduous trees by volume | % | 18.8 | 24.4 | 1.4 | 8.5 | 25.6 |
Spruce% | Percentage of Norway spruce by volume | % | 31.9 | 24.3 | 13.0 | 25.7 | 44.2 |
Pine% | Percentage of Scots pine by volume | % | 49.2 | 34.4 | 7.6 | 58.0 | 78.3 |
Other dec.trees | Number of non-commercial decidious trees | 0.3 | 0.5 | 0.0 | 0.0 | 1.0 | |
Tree sp.richness | Number of tree species | 4.3 | 1.1 | 4.0 | 4.0 | 5.0 | |
G.II spruce | Basal area of spruce in sub-canopy trees (trees reaching height of 25–75% of canopy layer) | m2 ha−1 | 5.2 | 3.0 | 4.5 | 7.3 | 2.9 |
Understory sp.rich. | Number of tree species in forest understory (height under 4 m) | 2.2 | 1.0 | 2.0 | 3.0 | 1.8 | |
Tree recruit.count | Number of trees in forest understory (height under 4 m) | N ha−1 | 373.3 | 85.5 | 268.8 | 507.0 | 610.7 |
Vol.lying DW | Volume of lying dead wood (over 10 cm at stump end) | m3 ha−1 | 45.6 | 42.2 | 13.1 | 37.4 | 64.9 |
Vol.stand.DW | Volume of standing dead wood (over 4 cm DBH) | m3 ha−1 | 18.6 | 18.4 | 5.7 | 13.9 | 26.6 |
Vol.total DW | Volume of total dead wood (lying & standing) | m3 ha−1 | 64.2 | 50.6 | 25.7 | 58.7 | 85.5 |
Vasc.sp.richness | Vascular species richness on plot | S | 22.0 | 10.4 | 14.0 | 21.0 | 29.0 |
Bryo.sp.richness | Bryophytes species richness on plot | S | 14.1 | 8.9 | 6.0 | 14.0 | 22.0 |
Vasc.Ell.Light | Herb layer weighted average Ellenberg light value | 4.4 | 0.8 | 3.9 | 4.7 | 5.1 | |
Vasc.Ell.Moist | Herb layer weighted average Ellenberg moisture value | 5.4 | 0.3 | 5.2 | 5.3 | 5.6 | |
Vasc.Ell.Fert | Herb layer weighted average Ellenberg nitrogen value | 3.9 | 0.9 | 3.0 | 3.9 | 4.7 | |
Bryo.Ell.Light | Bryophytes weighted average Ellenberg light value | 5.5 | 0.9 | 5.4 | 5.7 | 5.9 | |
Bryo.Ell.Moist | Bryophytes weighted average Ellenberg moisture value | 4.4 | 0.8 | 4.1 | 4.3 | 4.7 |
Structural Feature | Unit | Site Type | Stand Origin | Historic Management | Recent Management | Conservation |
Tree diameter | cm | 0.0533 | <0.0001 | 0.6684 | 0.1305 | 0.0053 |
Basal area | m2 ha−1 | 0.166 | 0.0372 | 0.5876 | 0.001 | 0.6321 |
Total volume | m3 ha−1 | 0.9402 | 0.4139 | 0.3392 | 0.0002 | 0.9685 |
Basal area of canopy trees | m2 ha−1 | 0.8706 | 0.1991 | 0.6159 | 0.0038 | 0.4927 |
Volume of canopy trees | m3 ha−1 | 0.8556 | 0.3578 | 0.6043 | 0.002 | 0.718 |
Basal area of sub-canopy trees | m2 ha−1 | 0.0058 | 0.678 | 0.0594 | 0.0166 | 0.2311 |
Volume of sub-canopy trees | m3 ha−1 | 0.0349 | 0.6996 | 0.1316 | 0.005 | 0.1228 |
Pine% | % | <0.0001 | 0.0003 | 0.8063 | 0.1188 | 0.4911 |
Spruce% | % | <0.0001 | 0.0013 | 0.2883 | 0.0835 | 0.303 |
Deciduous trees% | % | 0.0009 | 0.4384 | 0.3203 | 0.9815 | 0.4192 |
Number of other deciduous trees | 0.009 | 0.7624 | 0.2483 | 0.1059 | 0.3449 | |
Tree species richness | 0.001 | 0.1102 | 0.0153 | 0.1215 | 0.1271 | |
Basal area of spruce in sub-canopy trees | m2 ha−1 | 0.0053 | 0.4347 | 0.4131 | 0.017 | 0.2754 |
Understory tree species richness | <0.0001 | 0.7769 | 0.614 | 0.0025 | 0.7357 | |
Tree recruitment count | N ha−1 | 0.4842 | 0.0736 | 0.9082 | 0.3514 | 0.1374 |
Volume of lying deadwood | m3 ha−1 | 0.0996 | 0.0106 | 0.0028 | 0.0287 | <0.0001 |
Volume of standing deadwood | m3 ha−1 | 0.0026 | 0.5082 | 0.0116 | 0.0087 | 0.3901 |
Total deadwood volume | m3 ha−1 | 0.0146 | 0.0817 | 0.0007 | 0.0123 | 0.0056 |
Vascular species richness | S | <0.0001 | 0.5243 | 0.0854 | 0.1824 | 0.0204 |
Bryophyte species richness | S | <0.0001 | 0.0003 | 0.0594 | 0.1193 | 0.0082 |
Vascular Ellenberg light value | H′ | <0.0001 | 0.3275 | 0.0738 | 0.2462 | 0.3264 |
Vascular Ellenberg moisture value | H′ | <0.0001 | 0.6932 | 0.483 | 0.5528 | 0.0818 |
Vascular Ellenberg fertility value | <0.0001 | 0.9121 | 0.3953 | 0.6361 | 0.4722 | |
Bryophytes Ellenberg light value | 0.0026 | 0.8148 | 0.9815 | 0.0021 | 0.6929 | |
Bryophytes Ellenberg moisture value | 0.0015 | 0.7908 | 0.9934 | 0.105 | 0.3478 |
Appendix D
Feature | Habitat | Species | FR0 | FR1 | IV0 | IV1 | p* | Group |
ORIGIN | Ox-Myrt | Dicr maju | 59 | 21 | 46 | 5 | 0.0382 | Bryo |
ORIGIN | Ox-Myrt | Rhiz punc | 31 | 0 | 31 | 0 | 0.0374 | Bryo |
ORIGIN | Ox-Myrt | Dicr hete | 34 | 0 | 34 | 0 | 0.018 | Bryo |
ORIGIN | Ox-Myrt | Mela nemo | 38 | 0 | 38 | 0 | 0.0152 | Vasc |
ORIGIN | Ox-Myrt | Mela prat | 38 | 100 | 8 | 79 | 0.0002 | Vasc |
ORIGIN | Ox-Myrt | Dicr scop | 100 | 86 | 58 | 36 | 0.0164 | Bryo |
ORIGIN | Ox-Myrt | Plag aspl | 79 | 64 | 55 | 19 | 0.048 | Bryo |
ORIGIN | Ox-Myrt | Ptil pulc | 83 | 43 | 53 | 16 | 0.0352 | Bryo |
ORIGIN | Oxalis | Gale lute | 31 | 65 | 10 | 44 | 0.0112 | Vasc |
ORIGIN | Oxalis | Mili effu | 28 | 58 | 8 | 42 | 0.0142 | Vasc |
ORIGIN | Oxalis | Daph meze | 17 | 54 | 4 | 42 | 0.0032 | Vasc |
ORIGIN | Oxalis | Dryo expa | 21 | 54 | 5 | 41 | 0.0074 | Vasc |
ORIGIN | Oxalis | Lath vern | 14 | 50 | 2 | 44 | 0.0012 | Vasc |
ORIGIN | Oxalis | Viol rivi | 21 | 50 | 5 | 38 | 0.0198 | Vasc |
ORIGIN | Oxalis | Gali odor | 7 | 35 | 0 | 32 | 0.0052 | Vasc |
ORIGIN | Oxalis | Pulm obsc | 14 | 35 | 2 | 29 | 0.0214 | Vasc |
ORIGIN | Oxalis | Stel nemo | 14 | 35 | 2 | 29 | 0.0462 | Vasc |
ORIGIN | Oxalis | Dicr mont | 66 | 31 | 45 | 10 | 0.015 | Bryo |
ORIGIN | Oxalis | Ptil cri-c | 48 | 27 | 36 | 7 | 0.0348 | Bryo |
ORIGIN | Oxalis | Vacc viti | 62 | 27 | 48 | 6 | 0.003 | Vasc |
ORIGIN | Oxalis | Ptil pulc | 59 | 23 | 41 | 7 | 0.0114 | Bryo |
ORIGIN | Oxalis | Moeh trin | 45 | 19 | 31 | 6 | 0.049 | Vasc |
ORIGIN | Oxalis | Cirr pili | 52 | 19 | 43 | 3 | 0.0036 | Bryo |
ORIGIN | Oxalis | Impa parv | 52 | 15 | 46 | 2 | 0.0008 | Vasc |
ORIGIN | Oxalis | Brac oedi | 55 | 15 | 38 | 5 | 0.0148 | Bryo |
ORIGIN | Oxalis | Vero cham | 41 | 12 | 32 | 3 | 0.0234 | Vasc |
ORIGIN | Oxalis | Brac sale | 31 | 8 | 25 | 1 | 0.0358 | Bryo |
ORIGIN | Oxalis | Orth secu | 34 | 8 | 31 | 1 | 0.008 | Vasc |
ORIGIN | Oxalis | Tetr pell | 38 | 8 | 32 | 1 | 0.011 | Bryo |
ORIGIN | Oxalis | Nowe curv | 41 | 4 | 39 | 0 | 0.0008 | Bryo |
ORIGIN | Oxalis | Oxal acet | 100 | 100 | 47 | 53 | 0.0048 | Vasc |
ORIGIN | Oxalis | Hylo sple | 90 | 73 | 54 | 29 | 0.0346 | Bryo |
ORIGIN | Ox-Rhod | Call vulg | 19 | 44 | 5 | 32 | 0.0412 | Vasc |
ORIGIN | Ox-Rhod | Good repe | 63 | 12 | 53 | 2 | 0.0002 | Vasc |
ORIGIN | Ox-Rhod | Ptil pulc | 78 | 8 | 71 | 1 | 0.0002 | Bryo |
ORIGIN | Ox-Rhod | Mela nemo | 37 | 4 | 28 | 1 | 0.03 | Vasc |
ORIGIN | Ox-Rhod | Brac oedi | 41 | 4 | 39 | 0 | 0.0016 | Bryo |
ORIGIN | Ox-Rhod | Ptil cili | 44 | 4 | 41 | 0 | 0.0016 | Bryo |
ORIGIN | Ox-Rhod | Tetr pell | 44 | 4 | 41 | 0 | 0.0012 | Bryo |
ORIGIN | Ox-Rhod | Dicr maju | 48 | 4 | 45 | 0 | 0.0002 | Bryo |
ORIGIN | Ox-Rhod | Loph hete | 52 | 4 | 49 | 0 | 0.0002 | Vasc |
ORIGIN | Ox-Rhod | Plat laet | 56 | 4 | 52 | 0 | 0.0008 | Bryo |
ORIGIN | Ox-Rhod | Plat curv | 41 | 0 | 41 | 0 | 0.0006 | Bryo |
ORIGIN | Ox-Rhod | Sani unci | 44 | 0 | 44 | 0 | 0.0004 | Bryo |
ORIGIN | Ox-Rhod | Dicr mont | 63 | 0 | 63 | 0 | 0.0002 | Bryo |
ORIGIN | Ox-Rhod | Nowe curv | 74 | 0 | 74 | 0 | 0.0002 | Bryo |
ORIGIN | Ox-Rhod | Vacc myrt | 100 | 100 | 42 | 58 | 0.0002 | Vasc |
ORIGIN | Ox-Rhod | Pleu schr | 100 | 100 | 45 | 55 | 0.0174 | Bryo |
ORIGIN | Ox-Rhod | Hylo sple | 100 | 100 | 46 | 54 | 0.0038 | Bryo |
ORIGIN | Ox-Rhod | Vacc viti | 89 | 96 | 35 | 59 | 0.0122 | Vasc |
ORIGIN | Ox-Rhod | Mela prat | 74 | 80 | 23 | 55 | 0.0236 | Vasc |
ORIGIN | Ox-Rhod | Conv maja | 44 | 76 | 10 | 58 | 0.0012 | Vasc |
ORIGIN | Ox-Rhod | Dicr poly | 100 | 60 | 56 | 26 | 0.015 | Bryo |
ORIGIN | Ox-Rhod | Dicr scop | 85 | 44 | 54 | 16 | 0.01 | Bryo |
ORIGIN | Ox-Rhod | Ptil cri-c | 93 | 44 | 60 | 15 | 0.0006 | Bryo |
HISTORIC | Ox-Myrt | Cirr pili | 20 | 73 | 2 | 66 | 0.0022 | Bryo |
HISTORIC | Ox-Myrt | Brac oedi | 30 | 70 | 7 | 53 | 0.047 | Bryo |
HISTORIC | Ox-Myrt | Lyco anno | 0 | 64 | 0 | 64 | 0.0022 | Vasc |
HISTORIC | Ox-Myrt | Conv maja | 0 | 52 | 0 | 52 | 0.0124 | Vasc |
HISTORIC | Ox-Myrt | Orth secu | 10 | 48 | 1 | 44 | 0.0416 | Vasc |
HISTORIC | Ox-Myrt | Care vagi | 0 | 45 | 0 | 45 | 0.02 | Vasc |
HISTORIC | Ox-Myrt | Ange sylv | 0 | 39 | 0 | 39 | 0.0432 | Vasc |
HISTORIC | Ox-Myrt | Hypn cupr | 50 | 12 | 40 | 2 | 0.0224 | Bryo |
HISTORIC | Ox-Myrt | Moli caer | 60 | 9 | 54 | 1 | 0.0004 | Vasc |
HISTORIC | Ox-Myrt | Cala arun | 90 | 100 | 36 | 60 | 0.0016 | Vasc |
HISTORIC | Ox-Myrt | Rhyt triq | 60 | 79 | 16 | 57 | 0.0384 | Bryo |
HISTORIC | Oxalis | Pleu schr | 27 | 83 | 7 | 62 | 0.0018 | Bryo |
HISTORIC | Oxalis | Rubu idae | 27 | 73 | 7 | 55 | 0.01 | Vasc |
HISTORIC | Oxalis | Myce mura | 13 | 58 | 1 | 52 | 0.0032 | Vasc |
HISTORIC | Oxalis | Plag aspl | 20 | 58 | 4 | 45 | 0.032 | Bryo |
HISTORIC | Oxalis | Moeh trin | 7 | 43 | 1 | 35 | 0.0456 | Vasc |
HISTORIC | Oxalis | Mela prat | 0 | 30 | 0 | 30 | 0.039 | Vasc |
HISTORIC | Oxalis | Lath vern | 47 | 25 | 36 | 6 | 0.0328 | Vasc |
HISTORIC | Oxalis | Cala arun | 100 | 100 | 44 | 56 | 0.0136 | Vasc |
HISTORIC | Oxalis | Hylo sple | 60 | 90 | 20 | 60 | 0.0074 | Bryo |
HISTORIC | Oxalis | Vacc myrt | 67 | 88 | 24 | 56 | 0.0442 | Vasc |
HISTORIC | Oxalis | Frag vesc | 47 | 75 | 15 | 51 | 0.0442 | Vasc |
HISTORIC | Oxalis | Rhyt triq | 33 | 65 | 9 | 48 | 0.0448 | Bryo |
HISTORIC | Oxalis | Anem nemo | 93 | 65 | 61 | 22 | 0.0042 | Vasc |
HISTORIC | Ox-Rhod | Luzu pilo | 68 | 97 | 28 | 57 | 0.027 | Vasc |
RECENT | Ox-Myrt | Anem nemo | 32 | 83 | 5 | 69 | 0.0002 | Vasc |
RECENT | Ox-Myrt | Soli virg | 28 | 72 | 8 | 70 | 0.0002 | Vasc |
RECENT | Ox-Myrt | Crep palu | 12 | 67 | 0 | 50 | 0.0006 | Vasc |
RECENT | Ox-Myrt | Athy fili | 20 | 67 | 4 | 55 | 0.001 | Vasc |
RECENT | Ox-Myrt | Plag affi | 24 | 61 | 2 | 53 | 0.0008 | Bryo |
RECENT | Ox-Myrt | Dicr maju | 20 | 61 | 61 | 2 | 0.0006 | Bryo |
RECENT | Ox-Myrt | Loph hete | 16 | 61 | 46 | 7 | 0.0238 | Vasc |
RECENT | Ox-Myrt | Ange sylv | 12 | 56 | 2 | 44 | 0.003 | Vasc |
RECENT | Ox-Myrt | Desc flex | 28 | 56 | 58 | 17 | 0.0122 | Vasc |
RECENT | Ox-Myrt | Equi prat | 0 | 50 | 1 | 34 | 0.008 | Vasc |
RECENT | Ox-Myrt | Rhod rose | 20 | 50 | 11 | 61 | 0.0032 | Bryo |
RECENT | Ox-Myrt | Desc cesp | 0 | 44 | 3 | 31 | 0.0388 | Bryo |
RECENT | Ox-Myrt | Cirr pili | 0 | 44 | 10 | 65 | 0.0006 | Bryo |
RECENT | Ox-Myrt | Aego poda | 8 | 39 | 2 | 29 | 0.0364 | Vasc |
RECENT | Ox-Myrt | Orth secu | 8 | 39 | 5 | 47 | 0.006 | Vasc |
RECENT | Ox-Myrt | Frag vesc | 12 | 39 | 8 | 52 | 0.0046 | Vasc |
RECENT | Ox-Myrt | Equi sylv | 0 | 39 | 9 | 62 | 0.0014 | Vasc |
RECENT | Ox-Myrt | Rubu saxa | 0 | 39 | 12 | 62 | 0.0014 | Vasc |
RECENT | Ox-Myrt | Conv maja | 0 | 33 | 6 | 43 | 0.014 | Vasc |
RECENT | Ox-Myrt | Plag elli | 0 | 28 | 1 | 45 | 0.0018 | Bryo |
RECENT | Ox-Myrt | Hepa nobi | 0 | 28 | 5 | 44 | 0.0088 | Vasc |
RECENT | Ox-Myrt | Spha russ | 0 | 22 | 37 | 2 | 0.0244 | Bryo |
RECENT | Ox-Myrt | Poly comm | 0 | 22 | 41 | 2 | 0.0104 | Bryo |
RECENT | Ox-Myrt | Care digi | 0 | 22 | 19 | 53 | 0.0292 | Vasc |
RECENT | Ox-Myrt | Care vagi | 44 | 11 | 1 | 58 | 0.0004 | Vasc |
RECENT | Ox-Myrt | Cala arun | 96 | 100 | 41 | 58 | 0.0022 | Vasc |
RECENT | Ox-Myrt | Spha girg | 36 | 89 | 50 | 6 | 0.0104 | Bryo |
RECENT | Ox-Myrt | Tetr pell | 44 | 83 | 44 | 6 | 0.0262 | Bryo |
RECENT | Ox-Myrt | Rhyt triq | 44 | 83 | 23 | 56 | 0.023 | Bryo |
RECENT | Ox-Myrt | Care glob | 60 | 78 | 39 | 1 | 0.016 | Vasc |
RECENT | Ox-Myrt | Rubu idae | 44 | 78 | 5 | 37 | 0.0334 | Vasc |
RECENT | Ox-Myrt | Gymn dryo | 80 | 61 | 5 | 45 | 0.0066 | Vasc |
RECENT | Oxalis | Dryo fili | 32 | 52 | 9 | 38 | 0.0474 | Bryo |
RECENT | Oxalis | Plag elli | 14 | 48 | 4 | 36 | 0.0156 | Bryo |
RECENT | Oxalis | Orth secu | 32 | 11 | 25 | 2 | 0.0472 | Vasc |
RECENT | Oxalis | Luzu pilo | 89 | 96 | 38 | 55 | 0.0358 | Vasc |
RECENT | Oxalis | Dryo cart | 86 | 93 | 32 | 58 | 0.0096 | Bryo |
RECENT | Oxalis | Rubu saxa | 100 | 85 | 60 | 34 | 0.001 | Vasc |
RECENT | Oxalis | Plag affi | 36 | 67 | 13 | 43 | 0.0372 | Bryo |
RECENT | Ox-Rhod | Dicr scop | 20 | 94 | 4 | 74 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Ptil pulc | 0 | 72 | 0 | 72 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Call vulg | 22 | 64 | 4 | 51 | 0.005 | Vasc |
RECENT | Ox-Rhod | Nowe curv | 0 | 63 | 0 | 63 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Dicr mont | 0 | 53 | 0 | 53 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Plat laet | 0 | 50 | 0 | 50 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Loph hete | 0 | 47 | 0 | 47 | 0.0006 | Vasc |
RECENT | Ox-Rhod | Desc flex | 0 | 44 | 0 | 44 | 0.0016 | Vasc |
RECENT | Ox-Rhod | Dicr maju | 0 | 44 | 0 | 44 | 0.0014 | Bryo |
RECENT | Ox-Rhod | Ptil cili | 0 | 41 | 0 | 41 | 0.0018 | Bryo |
RECENT | Ox-Rhod | Tetr pell | 0 | 41 | 0 | 41 | 0.0022 | Bryo |
RECENT | Ox-Rhod | Brac oedi | 0 | 38 | 0 | 38 | 0.0036 | Bryo |
RECENT | Ox-Rhod | Sani unci | 0 | 38 | 0 | 38 | 0.0046 | Bryo |
RECENT | Ox-Rhod | Plat curv | 0 | 34 | 0 | 34 | 0.0028 | Bryo |
RECENT | Ox-Rhod | Call vulg | 45 | 22 | 39 | 3 | 0.0106 | Vasc |
RECENT | Ox-Rhod | Frag vesc | 50 | 19 | 45 | 2 | 0.002 | Vasc |
RECENT | Ox-Rhod | Fest ovin | 70 | 13 | 66 | 1 | 0.0002 | Vasc |
RECENT | Ox-Rhod | Good repe | 46 | 9 | 42 | 1 | 0.039 | Vasc |
RECENT | Ox-Rhod | Ptil pulc | 54 | 9 | 47 | 1 | 0.0374 | Bryo |
RECENT | Ox-Rhod | Dicr mont | 41 | 0 | 41 | 0 | 0.0308 | Bryo |
RECENT | Ox-Rhod | Nowe curv | 49 | 0 | 49 | 0 | 0.016 | Bryo |
RECENT | Ox-Rhod | Vacc viti | 90 | 100 | 32 | 64 | 0.0014 | Vasc |
RECENT | Ox-Rhod | Pleu schr | 100 | 100 | 43 | 57 | 0.0108 | Bryo |
RECENT | Ox-Rhod | Vacc myrt | 100 | 100 | 44 | 56 | 0.0034 | Vasc |
RECENT | Ox-Rhod | Hylo sple | 100 | 100 | 46 | 54 | 0.0216 | Bryo |
RECENT | Ox-Rhod | Pleu schr | 100 | 100 | 56 | 44 | 0.008 | Bryo |
RECENT | Ox-Rhod | Hylo sple | 100 | 100 | 57 | 43 | 0.0002 | Bryo |
RECENT | Ox-Rhod | Vacc myrt | 100 | 100 | 57 | 43 | 0.0002 | Vasc |
RECENT | Ox-Rhod | Vacc viti | 100 | 88 | 65 | 31 | 0.0002 | Vasc |
RECENT | Ox-Rhod | Luzu pilo | 90 | 84 | 56 | 31 | 0.0334 | Vasc |
RECENT | Ox-Rhod | Mela prat | 90 | 69 | 65 | 19 | 0.0002 | Vasc |
RECENT | Ox-Rhod | Conv maja | 70 | 53 | 50 | 15 | 0.0294 | Vasc |
RECENT | Ox-Rhod | Rubu saxa | 55 | 34 | 44 | 7 | 0.0164 | Vasc |
CONSERV. | Ox-Myrt | Hylo sple | 100 | 97 | 57 | 42 | 0.0458 | Bryo |
CONSERV. | Ox-Myrt | Plag aspl | 56 | 79 | 13 | 61 | 0.0288 | Bryo |
CONSERV. | Ox-Myrt | Soli virg | 89 | 50 | 60 | 16 | 0.0116 | Vasc |
CONSERV. | Ox-Myrt | Mela prat | 100 | 47 | 76 | 11 | 0.0002 | Vasc |
CONSERV. | Ox-Myrt | Mela sylv | 78 | 35 | 61 | 7 | 0.0018 | Vasc |
CONSERV. | Oxalis | Rubu saxa | 85 | 100 | 36 | 58 | 0.0094 | Vasc |
CONSERV. | Oxalis | Maia bifo | 96 | 100 | 41 | 57 | 0.0358 | Vasc |
CONSERV. | Oxalis | Conv maja | 58 | 86 | 22 | 53 | 0.023 | Vasc |
CONSERV. | Oxalis | Dryo cart | 96 | 83 | 57 | 34 | 0.0242 | Vasc |
CONSERV. | Oxalis | Plag affi | 65 | 38 | 43 | 13 | 0.0348 | Bryo |
CONSERV. | Oxalis | Stel holo | 73 | 38 | 49 | 12 | 0.0104 | Vasc |
CONSERV. | Oxalis | Pter aqui | 27 | 72 | 8 | 51 | 0.004 | Vasc |
CONSERV. | Oxalis | Orth secu | 8 | 34 | 2 | 27 | 0.0334 | Vasc |
CONSERV. | Oxalis | Eurh angu | 58 | 28 | 41 | 8 | 0.023 | Bryo |
CONSERV. | Oxalis | Dryo fili | 58 | 28 | 43 | 7 | 0.0124 | Vasc |
CONSERV. | Oxalis | Plag elli | 46 | 17 | 34 | 4 | 0.0322 | Bryo |
CONSERV. | Oxalis | Impa parv | 54 | 17 | 39 | 5 | 0.0116 | Vasc |
CONSERV. | Oxalis | Stel nemo | 35 | 14 | 29 | 2 | 0.0488 | Vasc |
CONSERV. | Oxalis | Urti dioi | 38 | 14 | 29 | 3 | 0.0336 | Vasc |
Appendix E
Vascular Plants | |
Abbervation | Name |
Aego poda | Aegopodium podagraria |
Anem nemo | Anemone nemorosa |
Ange sylv | Angelica sylvestris |
Athy fili | Athyrium filix-femina |
Cala arun | Calamagrostis arundinacea |
Call vulg | Calluna vulgaris |
Care digi | Carex digitata |
Care glob | Carex globularis |
Care vagi | Carex vaginata |
Conv maja | Convallaria majalis |
Crep palu | Crepis paludosa |
Daph meze | Daphne mezereum |
Desc cesp | Deschampsia cespitosa |
Desc flex | Deschampsia flexuosa |
Dryo cart | Dryopteris carthusiana |
Dryo expa | Dryopteris expansa |
Dryo fili | Dryopteris filix-mas |
Equi prat | Equisetum pratense |
Equi sylv | Equisetum sylvaticum |
Fest ovin | Festuca ovina |
Frag vesc | Fragaria vesca |
Gale lute | Galeobdolon luteum |
Gali odor | Galium odoratum |
Good repe | Goodyera repens |
Gymn dryo | Gymnocarpium dryopteris |
Hepa nobi | Hepatica nobilis |
Impa parv | Impatiens parviflora |
Lath vern | Lathyrus vernus |
Luzu pilo | Luzula pilosa |
Lyco anno | Lycopodium annotinum |
Maia bifo | Maianthemum bifolium |
Mela nemo | Melampyrum nemorosum |
Mela prat | Melampyrum pratense |
Mela sylv | Melampyrum sylvaticum |
Mili effu | Milium effusum |
Moeh trin | Moehringia trinervia |
Moli caer | Molinia caerulea |
Myce mura | Mycelis muralis |
Orth secu | Orthilia secunda |
Oxal acet | Oxalis acetosella |
Pter aqui | Pteridium aquilinum |
Pulm obsc | Pulmonaria obscura |
Rubu idae | Rubus idaeus |
Rubu saxa | Rubus saxatilis |
Soli virg | Solidago virgaurea |
Stel holo | Stellaria holostea |
Stel nemo | Stellaria nemorum |
Urti dioi | Urtica dioica |
Vacc myrt | Vaccinium myrtillus |
Vacc viti | Vaccinium vitis-idaea |
Vero cham | Veronica chamaedrys |
Viol rivi | Viola riviniana |
Bryophytes | |
Abbervation | Name |
Brac oedi | Brachythecium oedipodium |
Brac sale | Brachythecium salebrosum |
Cirr pili | Cirriphyllum piliferum |
Dicr hete | Dicranum heteromalla |
Dicr maju | Dicranum majus |
Dicr mont | Dicranum montanum |
Dicr poly | Dicranum polysetum |
Dicr scop | Dicranum scoparium |
Eurh angu | Eurhynchium angustirete |
Hylo sple | Hylocomium splendens |
Hypn cupr | Hypnum cupressiforme |
Loph hete | Lophocolea heterophylla |
Nowe curv | Nowellia curvifolia |
Plag aspl | Plagiochila asplenioides |
Plag affi | Plagiomnium affine |
Plag elli | Plagiomnium ellipticum |
Plat curv | Plagiothecium curvifolium |
Plat laet | Plagiothecium laetum |
Pleu schr | Pleurozium schreberi |
Poly comm | Polytrichum commune |
Ptil cili | Ptilidium ciliare |
Ptil pulc | Ptilidium pulcherrimum |
Ptil cri-c | Ptilium crista-castrensis |
Rhiz punc | Rhizomnium punctatum |
Rhod rose | Rhodobryum roseum |
Rhyt triq | Rhytidiadelphus triquetrus |
Sani unci | Sanionia uncinata |
Spha girg | Sphagnum girgensohnii |
Spha russ | Sphagnum russowii |
Tetr pell | Tetraphis pellucida |
Appendix F
References
- Peterson, G.D. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 2002, 5, 329–338. [Google Scholar] [CrossRef]
- Ogle, K.; Barber, J.J.; Barron-Gafford, G.A.; Bentley, L.P.; Young, J.M.; Huxman, T.E.; Loik, M.E.; Tissue, D.T. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 2015, 18, 221–235. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Lier, M.; Schuck, A. Criterion 4, Maintenance, Conservation and Appropriate Enhancement of Biological Diversity in Forest Ecosystems. In State of Europe’s Forests; Forest Europe: Bonn, Germany, 2020. [Google Scholar]
- Pommerening, A.; Murphy, S.T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. For. Int. J. For. Res. 2004, 77, 27–44. [Google Scholar] [CrossRef]
- Pukkala, T.; Lähde, E.; Laiho, O. Continuous Cover Forestry in Finland—Recent Research Results. In Continuous Cover Forestry; Managing Forest Ecosystems; Pukkala, T., von Gadow, K., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 23. [Google Scholar] [CrossRef]
- Kruse, L.; Erefur, C.; Westin, J.; Ersson, B.T.; Pommerening, A. Towards a benchmark of national training requirements for continuous cover forestry (CCF) in Sweden. Trees For. People 2023, 12, 100391. [Google Scholar] [CrossRef]
- Lõhmus, A.; Kohv, K.; Palo, A.; Viilma, K. Loss of old-growth, and the minimum need for strictly protected forests in Estonia. Ecol. Bull. 2004, 51, 401–411. [Google Scholar]
- Samojlik, T.; Rotherham, I.D.; Jędrzejewska, B. Quantifying Historic Human Impacts on Forest Environments: A Case Study in Białowieża Forest, Poland. Environ. Hist. 2013, 18, 576–602. [Google Scholar] [CrossRef]
- Vellend, M.; Brown, C.D.; Kharouba, H.M.; McCune, J.L.; Myers-Smith, I.H. Historical ecology: Using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 2013, 100, 1294–1305. [Google Scholar] [CrossRef]
- Axelsson, A.-L.; Östlund, L. Retrospective gap analysis in a Swedish boreal forest landscape using historical data. For. Ecol. Manag. 2001, 147, 109–122. [Google Scholar] [CrossRef]
- Axelsson, A.-L. Forest Landscape Change in Boreal Sweden 1850–2000—A Multiscale Approach; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2001; ISBN 91-576-6067-0. [Google Scholar]
- Rocha-Santos, L.; Pessoa, M.S.; Cassano, C.R.; Talora, D.C.; Orihuela, R.L.L.; Mariano-Neto, E.; Morante-Filho, J.C.; Faria, D.; Cazetta, E. The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biol. Conserv. 2016, 196, 1–9. [Google Scholar] [CrossRef]
- Tabarelli, M.; Lopes, A.V.; Peres, C.A. Edge-effects Drive Tropical Forest Fragments Towards an Early-Successional System. Biotropica 2008, 40, 657–661. [Google Scholar] [CrossRef]
- Hedwall, P.O.; Brunet, J.; Nordin, A.; Bergh, J. Changes in the abundance of keystone forest floor species in response to changes of forest structure. J. Veg. Sci. 2013, 24, 296–306. [Google Scholar] [CrossRef]
- Aavik, T.; Püssa, K.; Roosaluste, E.; Moora, M. Vegetation change in boreonemoral forest during succession—trends in species composition, richness and differentiation diversity. Ann. Bot. Fenn. 2009, 46, 326–335. [Google Scholar] [CrossRef]
- Hietala-Koivu, R.; Järvenpää, T.; Helenius, J. Value of semi-natural areas as biodiversity indicators in agricultural landscapes. Agric. Ecosyst. Environ. 2004, 101, 9–19. [Google Scholar] [CrossRef]
- Duflot, R.; Aviron, S.; Ernoult, A.; Fahrig, L.; Burel, F. Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: A case study. Ecol. Restor. 2015, 30, 75–83. [Google Scholar] [CrossRef]
- Niemelä, J. Management in relation to disturbance in the boreal forest. For. Ecol. Manag. 1999, 115, 127–134. [Google Scholar] [CrossRef]
- Angelstam, P. Maintaining and restoring biodiversity in European boreal forests by developing natural disturbance regimes. J. Veg. Sci. 1998, 9, 593–602. [Google Scholar] [CrossRef]
- Esseen, P.; Ehnström, B.; Ericson, L.; Sjöberg, K. Boreal Forests. Ecol. Bull. 1997, 46, 16–47. [Google Scholar]
- Baker, S.C.; Spies, T.A.; Wardlaw, T.W.; Balmer, J.; Franklin, J.F.; Jordan, G.J. The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For. Ecol. Manag. 2013, 302, 107–121. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can. J. For. Res. 2010, 40, 370–384. [Google Scholar] [CrossRef]
- Bailey, J.D.; Mayrsohn, C.; Doescher, P.S.; St. Pierre, E.; Tappeiner, J.C. Understory vegetation in old and young Douglas-fir forests of western Oregon. For. Ecol. Manag. 1998, 112, 289–302. [Google Scholar] [CrossRef]
- Jalonen, J.; Vanha-Majamaa, I. Immediate effects of four different felling methods on mature boreal spruce forest understory vegetation in southern Finland. For. Ecol. Manag. 2001, 146, 25–34. [Google Scholar] [CrossRef]
- Kohv, K.; Zobel, M.; Liira, J. The resilience of the forest field layer to anthropogenic disturbances depends on site productivity. Can. J. For. Res. 2013, 43, 1040–1049. [Google Scholar] [CrossRef]
- Lõhmus, A.; Lõhmus, P.; Remm, J.; Vellak, K. Old-growth structural elements in a strict reserve and commercial forest landscape in Estonia. For. Ecol. Manag. 2005, 216, 201–215. [Google Scholar] [CrossRef]
- Fridman, J.; Walheim, M. Amount, structure, and dynamics of dead wood on managed forestland in Sweden. For. Ecol. Manag. 2000, 131, 23–36. [Google Scholar] [CrossRef]
- Kapusta, P.; Kurek, P.; Piechnik, L.; Szarek-Łukaszewska, G.; Zielonka, T.; Żywiec, M.; Holeksa, J. Natural and human-related determinants of dead wood quantity and quality in a managed European lowland temperate forest. For. Ecol. Manag. 2020, 459, 117845. [Google Scholar] [CrossRef]
- Grebner, D.L.; Bettinger, P.; Siry, J.P. Introduction to Forestry and Natural Resources; Academic Press: New York, NY, USA, 2013; 508p. [Google Scholar]
- Borggreve, B. Die Holzzucht: Ein Grundriss für Unterricht und Wirtschaft; P. Parey: Singhofen, Germany, 1891. [Google Scholar]
- Kiisel, M.; Remm, L. Continuous Cover Forestry Practitioners in a Clear-cutting-oriented System: Assessing the Potential to Foster the Practice. Small-Scale For. 2022, 21, 325–348. [Google Scholar] [CrossRef]
- Nyland, R. Silviculture: Concepts and Applications, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2016; 680p. [Google Scholar]
- Rammo, M.; Karoles, K.; Maran, K.; Jansen, J.; Almik, A.; Rammo, R. Visitor surveys and visitor impact monitoring in recreational areas in state forests of Estonia. In Proceedings of the Second International Conference on Monitoring and Management of Visitor Flows in Recreational and Protected Areas, Rovaniemi, Finland, 16–20 June 2004; pp. 397–399. [Google Scholar]
- Tuvi, E.-L.; Vellak, A.; Reier, Ü.; Szava-Kovats, R.; Pärtel, M. Establishment of protected areas in different ecoregions, ecosystems, and diversity hotspots under successive political systems. Biol. Conserv. 2011, 144, 1726–1732. [Google Scholar] [CrossRef]
- Ahti, T.; Hämet-Ahti, L.; Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 1968, 5, 169–211. [Google Scholar]
- Kallis, A.; Rosin, K.; Pärnpuu, P.; Loodla, K.; Šišova, V. 100 Aastat Eesti Ilma (Teenistust); Keskkonnaagentuur: Tallinn, Estonia, 2019; 186p. (In Estonian) [Google Scholar]
- Kiviste, A.; Hordo, M.; Kangur, A.; Kardakov, A.; Laarmann, D.; Lilleleht, A.; Metslaid, S.; Sims, A.; Korjus, H. Monitoring and modelling of forest ecosystems: The Estonian Network of Forest Research Plots. For. Stud./Metsanduslikud Uurim. 2015, 62, 26–38. [Google Scholar] [CrossRef]
- Lõhmus, E. Forest Site Types of Estonia; Eesti Loodusfoto: Tartu, Estonia, 2004; 80p. (In Estonian) [Google Scholar]
- Cajander, A.K. Forest types and their significance. Acta For. Fenn. 1949, 56, 1–71. [Google Scholar] [CrossRef]
- Ingerpuu, N.; Kalda, A.; Kannukene, L.; Krall, H.; Leis, M.; Vellak, K. Eesti sammalde määraja. In Key-Book of Estonian Bryophytes; Eesti Loodusfoto: Tartu, Estonia, 1998; 239p. (In Estonian) [Google Scholar]
- Leht, M. Eesti taimede määraja. In Handbook of Estonian Vascular Plants; Estonian University of Life Sciences, Eesti Loodusfoto: Tartu, Estonia, 2010; 447p. (In Estonian) [Google Scholar]
- Estonian State Forest Center Archive. Sagadi Museum Archive, Mõisa/3, Haljala parish, Lääne-Viru county, Estonia & Antsla Office Archive, Haabsaare, Antsla parish, Võru County, Estonia. 2023. [Google Scholar]
- National Archives of Estonia. Register of the Maps. 2023. Available online: https://www.ra.ee/kaardid/ (accessed on 21 April 2024).
- EELIS. Nature Information System (Eesti Looduse Infosüsteem). Estonian Environmental Agency. 2024. Available online: http://loodus.keskkonnainfo.ee/eelis/ (accessed on 21 April 2024).
- Ellenberg, H.; Weber, H.E.; Dull, R.; Wirth, V.; Werner, W.; Paulissen, D. Ziegerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1991, 18, 1–248. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS® System for Mixed Models; SAS Publishing: Cary, NC, USA, 1996; 814p. [Google Scholar]
- Haynes, W. Tukey’s Test. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Mielke, P.W.; Berry, K.J.; Johnson, E.S. Multi-response permutation procedures for a priori classifications. Commun. Stat-Theor. 1976, 5, 1409–1424. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC_ORD:Multivariate Analysis of Ecological Data; Version 7.1; MjM Software: Gleneden Beach, OR, USA, 2016. [Google Scholar]
- Nilsson, S.G.; Niklasson, M.; Hedin, J.; Aronsson, G.; Gutowski, J.M.; Linder, P.; Ljungberg, H.; Mikusinski, G.; Ranius, T. Densities of large living and dead trees in old-growth temperate and boreal forests. For. Ecol. Manag. 2002, 161, 189–204. [Google Scholar] [CrossRef]
- Põldveer, E.; Korjus, H.; Kiviste, A.; Kangur, A.; Paluots, T.; Laarmann, D. Assessment of spatial stand structure of hemiboreal conifer dominated forests according to different levels of naturalness. Ecol. Indic. 2020, 110, 105944. [Google Scholar] [CrossRef]
- Runnel, K.; Palo, A.; Reila, A.; Rosenvald, R.; Lõhmus, A. External management effects on the stand structure of protected forest patches. Appl. Veg. Sci. 2022, 25, e12655. [Google Scholar] [CrossRef]
- Hautala, H.; Kuuluvainen, T.; Hokkanen, T.J.; Tolvanen, A. Long-term spatial organization of understorey vegetation in boreal Pinus sylvestris stands with different fire histories. Community Ecol. 2005, 6, 119–130. [Google Scholar] [CrossRef]
- Rydgren, K.; De Kroon, H.; Økland, R.H.; Van Groenendael, J. Effects of fine-scale disturbances on the demography and population dynamics of the clonal moss Hylocomium splendens. J. Ecol. 2001, 89, 395–405. [Google Scholar] [CrossRef]
- Lawrence, A. Forestry in transition: Imperial legacy and negotiated expertise in Romania and Poland. For. Policy Econ. 2009, 11, 429–436. [Google Scholar] [CrossRef]
- Cashore, B.; Gale, F.; Meidinger, E.; Newsom, D. Confronting Sustainability: Forest Certification in Developing and Transitioning Countries; Forestry & Environmental Studies Publication Series; Yale University: New Haven, CT, USA, 2006; Volume 28, Available online: https://elischolar.library.yale.edu/fes-pubs/28 (accessed on 21 April 2024).
- Lazdinis, M.; Carver, A.; Tõnisson, K.; Silamikele, I. Innovative use of forest policy instruments in countries with economies in transition: Experience of the Baltic States. For. Policy Econ. 2005, 7, 527–537. [Google Scholar] [CrossRef]
- Eikeland, S.; Eythorsson, E.; Ivanova, L. From Management to Mediation: Local Forestry Management and the Forestry Crisis in Post-Socialist Russia. Environ. Manag. 2004, 33, 285–293. [Google Scholar] [CrossRef]
- Palm-Hellenurm, K.; Tullus, T.; Vodde, F.; Jõgiste, K. Delayed response of bryophytes to wind disturbance and salvage logging in hemiboreal mixed forests. For. Ecol. Manag. 2024, 555, 121718. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Yu, J.; Li, J.; Shangguan, Z.; Deng, L. Thinning increases forest ecosystem carbon stocks. For. Ecol. Manag. 2024, 555, 121702. [Google Scholar] [CrossRef]
- Bourgouin, M.; Haughian, S.R.; Jean, M. The diversity of epixylic bryophytes in relation to dead wood properties and forest management in New Brunswick, Canada. For. Ecol. Manag. 2024, 554, 121646. [Google Scholar] [CrossRef]
- Lõhmus, K.; Paal, T.; Liira, J. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape—Dispersal versus establishment. Ecol. Evol. 2014, 4, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- Halpern, C.B.; McKenzie, D.; Evans, S.A.; Maguire, D.A. Initial responses of forest understories to varying levels and patterns of green-tree retention. Ecol. Appl. 2005, 15, 175–195. [Google Scholar] [CrossRef]
- Nelson, C.R.; Halpern, C.B. Short-term effects of timber harvest and forest edges on ground-layer mosses and liverworts. Can. J. Bot. 2005, 83, 610–620. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Kruys, N. Ecology of wood debris in boreal forests. Ecol. Bull. 2001, 49, 279–281. [Google Scholar]
- Berg, A.; Ehnstrom, B.; Gustafsson, L.; Hallingback, T.; Jonselland, M.; Weslien, J. Threatened Plant, Animal, and Fungus Species in Swedish Forests: Distribution and Habitat Associations. Conserv. Biol. 1994, 8, 718–731. [Google Scholar] [CrossRef]
- Czerepko, J.; Gawryś, R.; Mańk, K.; Janek, M.; Tabor, J.; Skalski, Ł. The influence of the forest management in the Białowieża forest on the species structure of the forest community. For. Ecol. Manag. 2021, 496, 119363. [Google Scholar] [CrossRef]
- Hämäläinen, A.; Runnel, K.; Ranius, T.; Strengbom, J. Diversity of forest structures important for biodiversity is determined by the combined effects of productivity, stand age, and management. Ambio 2024, 53, 718–729. [Google Scholar] [CrossRef] [PubMed]
Factor: Historic Origin | |
Level 0: Multi-Aged | Level 1: Even-Aged |
Vascular plants: Goodyera repensR, Impatiens parvifloraO, Melampyrum nemorosumMR, Moehringia trinerviaO, Orthilia secundaO, Vaccinium vitis-idaeaO, Veronica chamaedrysO | Vascular plants: Calluna vulgarisR, Daphne mezereumO, Dryopteris expansaO, Galeobdolon luteumO, Galium odoratumO, Lathyrus vernusO, Milium effusumO, Pulmonaria obscuraO, Stellaria nemorumO, Viola rivinianaO |
Bryophytes: Brachythecium oedipodiumOR, Brachythecium salebrosumO, Cirriphyllum piliferumO, Dicranum heteromallaM, Dicranum majusMR, Dicranum montanumOR, Lophocolea heterophyllaR, Nowellia curvifoliaOR, Plagiothecium curvifoliumR, Plagiothecium laetumR, Ptilidium ciliare, Ptilium crista-castrensisO, Ptilidium pulcherrimumO,R, Rhizomnium punctatumM, Sanionia uncinataR, Tetraphis pellucidaO,R | Bryophytes: - |
Factor: Historic Management | |
Level 0: Not Managed | Level 1: Managed |
Vascular plants: Molinia caeruleaM, Lathyrus vernusO | Vascular plants: Angelica sylvestrisM, Carex vaginataM, Convallaria majalisM, Lycopodium annotinumM, Melampyrum pratenseO, Moehringia trinerviaO, Mycelis muralisO, Orthilia secundaM, Rubus idaeusO |
Bryophytes: Hypnum cupressiformeM | Bryophytes: Brachythecium oedipodiumM, Cirriphyllum piliferumM, Plagiochila asplenioidesO, Pleurozium schreberiO |
Factor: Recent Management | |
Level 0: Not Managed | Level 1: Managed |
Vascular plants: Calluna vulgarisR, Deschampsia flexuosaM, Festuca ovinaR, Fragaria vescaR, Goodyera repensR, Orthilia secundaO | Vascular plants: Aegopodium podagrariaM, Anemone nemorosaM, Angelica sylvestrisM, Athyrium filix-feminaM, Calluna vulgarisR, Carex digitataM, Carex vaginataM, Convallaria majalisM, Crepis paludosaM, Deschampsia cespitosaM, Deschampsia flexuosaR, Dryopteris filix-masO, Equisetum pratenseM, Equisetum sylvaticumM, Fragaria vescaM, Hepatica nobilisM, Orthilia secundaM, Rubus saxatilisM, Solidago virgaureaM |
Bryophytes: Dicranum majusM, Dicranum montanumR, Lophocolea heterophyllaM, Nowellia curvifoliaR, Polytrichum communeM, Ptilidium pulcherrimumR, Sphagnum russowiiM | Bryophytes: Brachythecium oedipodiumR, Cirriphyllum piliferumM, Dicranum majusR, Dicranum montanumR, Dicranum scopariumR, Lophocolea heterophyllaR, Nowellia curvifoliaR, Plagiomnium affineM, Plagiomnium ellipticumMO, Plagiothecium curvifoliumR, Plagiothecium laetumR, Ptilidium ciliareR, Ptilidium pulcherrimumR, Rhodobryum roseumM, Sanionia uncinataR, Tetraphis pellucidaR |
Factor: Conservation | |
Level 1: Protected | Level 0: Commercial |
Vascular plants: Pteridium aquilinumO, Orthilia secundaO | Vascular plants: Dryopteris filix-masO, Impatiens parvifloraO, Stellaria nemorumO, Urtica dioicaO |
Bryophytes: - | Bryophytes: Eurhynchium angustireteO, Plagiomnium ellipticumO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paluots, T.; Liira, J.; Leis, M.; Laarmann, D.; Põldveer, E.; Franklin, J.F.; Korjus, H. Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests. Forests 2024, 15, 2035. https://doi.org/10.3390/f15112035
Paluots T, Liira J, Leis M, Laarmann D, Põldveer E, Franklin JF, Korjus H. Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests. Forests. 2024; 15(11):2035. https://doi.org/10.3390/f15112035
Chicago/Turabian StylePaluots, Teele, Jaan Liira, Mare Leis, Diana Laarmann, Eneli Põldveer, Jerry F. Franklin, and Henn Korjus. 2024. "Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests" Forests 15, no. 11: 2035. https://doi.org/10.3390/f15112035
APA StylePaluots, T., Liira, J., Leis, M., Laarmann, D., Põldveer, E., Franklin, J. F., & Korjus, H. (2024). Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests. Forests, 15(11), 2035. https://doi.org/10.3390/f15112035