Designing a Multitemporal Analysis of Land Use Changes and Vegetation Indices to Assess the Impacts of Severe Forest Fires Before Applying Control Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Sources
2.3. Multitemporal Analysis of Land Use Changes
2.4. Multitemporal Analysis Using Satellite Images
2.5. RGB Images Before and After the Forest Fire
3. Results
3.1. Land Use Changes in Long-Term Periods (1956–2003)
3.2. Analysis of Satellite Images Before and After the Forest Fire
3.3. Normalize Difference Vegetation Index (NDVI)
3.4. Normalized Burn Ratio (NBR) and Difference Normalized Burn Ratio (dNBR)
4. Discussion
4.1. General Considerations
4.2. Potential Areas for Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Linley, G.; Jolly, C.; Doherty, T.; Geary, W.; Armenteras, D.; Belcher, C.; Bliege, B.; Duane, A.; Fletcher, M.; Giorgis, M.; et al. What do you mean, ‘megafire’? Glob. Ecol. Biogeogr. 2022, 31, 1906–1922. [Google Scholar] [CrossRef]
- Costa, P.; Castellnou, M.; Larrañaga, A.; Miralles, M.; Kraus, D. Prevention of Large Wildfires Using the Fire Types Concept; Generalitat de Catalunya: Barcelona, Spain, 2011; ISBN 978-84-694-1457-6. [Google Scholar]
- Science Media Centre Spain. Sixth-Generation Fires: What They Are, How Climate Change Affects Them, and Ways to Prevent Them. Available online: https://sciencemediacentre.es/incendios-de-sexta-generacion-que-son-como-les-afecta-el-cambio-climatico-y-formas-de-prevenirlos (accessed on 2 November 2023).
- Junta de Andalucía. Ministry of Sustainability, Environment and Blue Economy. General Directorate for Forest Policy and Biodiversity. Preliminary Report of the Fire in Los Guájares (Granada). Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-%C3%ADndice/-/asset_publisher/zX2ouZa4r1Rf/content/incendios-singulares/20151 (accessed on 4 June 2023).
- Resco de Dios, V. Global Change, Pyrophysiology, and Wildfires. In Plant-Fire Interactions. In Plant-Fire Interactions: Applying Ecophysiology to Wildfire Management; Springer: Berlin/Heidelberg, Germany, 2020; p. 36. [Google Scholar]
- Turco, M.; Llasat, M.C.; von Hardenberg, J.; Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Clim. Change 2014, 125, 369–380. [Google Scholar] [CrossRef]
- Al Sayah, M.; Abdallah, C.; Sarkissian, R.; Abboud, M. A framework for investigating the land degradation neutrality—Disaster risk reduction nexus at the sub-national scales. J. Arid. Environ. 2021, 195, 104635. [Google Scholar] [CrossRef]
- Xu, R.; Ye, T.; Yue, X.; Yang, Z.; Yu, W.; Zhang, Y.; Bell, M.L.; Morawska, L.; Yu, P.; Zhang, Y.; et al. Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 2023, 621, 521–529. [Google Scholar] [CrossRef]
- Clarke, H.; Nolan, R.H.; De Dios, V.R.; Bradstock, R.A.; Griebel, A.; Khanal, S.; Boer, M.M. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 2022, 13, 7161. [Google Scholar] [CrossRef]
- Skulska, I.; Molina, C.; Rego, F. The role of forest policy in Mediterranean mountain community Lands: A review of the decentralization processes in European countries. J. Rural Stud. 2020, 80, 490–502. [Google Scholar] [CrossRef]
- Economou, F. Large fire disaster and the regional economy: The 2007 case of the Peloponnese. South-East. Eur. J. Econ. 2019, 17, 7–31. Available online: https://ojs.lib.uom.gr/index.php/seeje/article/view/9632 (accessed on 7 December 2023).
- Kemp, L.; Xu, C.; Depledge, J.; Ebi, K.L.; Gibbins, G.; Kohler, T.A.; Rockström, J.; Scheffer, M.; Schellnhuber, H.J.; Steffen, W.; et al. Climate Endgame: Exploring catastrophic climate change scenarios. Proc. Natl. Acad. Sci. USA 2022, 119, 1–9. [Google Scholar] [CrossRef]
- Arango, E.; Nogal, M.; Yang, M.; Sousa, H.; Stewart, M.; Matos, J. Dynamic thresholds for the resilience assessment of road traffic networks to wildfires. Reliab. Eng. Syst. Saf. 2023, 238, 109407. [Google Scholar] [CrossRef]
- Prestemon, J.; Butry, D.; Abt, K.; Sutphen, R. Net benefits of wildfire prevention education efforts. For. Sci. 2010, 56, 181–192. [Google Scholar] [CrossRef]
- Hesseln, H. Wildland Fire Prevention: A Review. Curr. For. Rep. 2018, 4, 178–190. [Google Scholar] [CrossRef]
- Lasaponara, R.; Abate, N.; Fattore, C.; Aromando, A.; Cardettini, G.; Di Fonzo, M. On the use of Sentinel-2 NDVI Time Series and Google Earth engine to detect Land-Use/Land-Cover changes in Fire-Affected areas. Remote Sens. 2022, 14, 4723. [Google Scholar] [CrossRef]
- Kasischke, E.; French, N.; Harrell, P.; Christensen, N.; Ustin, S.; Barry, D. Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data. Remote Sens. Environ. 1993, 45, 61–71. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Goodrick, S. Wildfire potential evaluation during a drought event with a regional climate model and NDVI. Ecol. Inform. 2010, 5, 418–428. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández–Manso, A.; Quintano, C.; Fernández-García, V.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For. Ecol. Manag. 2019, 433, 24–32. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.; Subramanian, S.; Crowley, M.; Taylor, S.; Flannigan, M. A review of machine learning applications in wildfire Science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.; Xu, C. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci. Total Environ. 2018, 630, 1044–1056. [Google Scholar] [CrossRef]
- Turco, M.; Abatzoglou, J.; Herrera, S.; Zhuang, Y.; Jerez, S.; Lucas, D.; AghaKouchak, A.; Cvijanović, I. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl. Acad. Sci. USA 2023, 120, 1–9. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales-González, J.M.; Pérez Albarracín, A.; Bandala, E.R.; Escrivá Saneugenio, F.; Keesstra, S.D.; Cerdà, A. Circulation weather types as a key factor on runoff initiation and sediment detachment in Mediterranean shrublands. Cuad. Invest. Geogr. 2023, 49, 29–49. [Google Scholar] [CrossRef]
- Meteorological Space Agency. Climate Maps of Spain (1981–2010) y Eto (1996–2016). Ministry for the Ecological Transition. Available online: https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/MapasclimaticosdeEspana19812010/MapasclimaticosdeEspana19812010.pdf (accessed on 10 November 2023).
- Download Center of CNIG (IGN). Download Center. Available online: https://centrodedescargas.cnig.es/CentroDescargas/index.jsp# (accessed on 1 June 2023).
- Andalucian Environmental Portal. Environmental Information. Rediam. Available online: https://portalrediam.cica.es/descargas (accessed on 1 June 2023).
- Andalucia Institute of Statistics and Cartography (IECA). Line@, Spatial Information Locator of Andalucia. Available online: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/lineav2/web/ (accessed on 18 June 2023).
- Land Use Information System of Andalucia (SIOSE). Available online: https://www.siose.es/presentacion (accessed on 18 June 2023).
- National Institute of Statistics (INE). Available online: https://www.ine.es/en/ (accessed on 11 July 2023).
- Natural Heritage Information System of Andalucia (SIPNA). Available online: https://www.juntadeandalucia.es/medioambiente/portal/landing-page-%C3%ADndice/-/asset_publisher/zX2ouZa4r1Rf/content/sistema-de-informaci-c3-b3n-sobre-el-patrimonio-natural-de-andaluc-c3-ada-sipna-/20151 (accessed on 14 July 2023).
- Copernicus. Copernicus Data Space Ecosystem. Europe’s eyes on Earth. Available online: https://dataspace.copernicus.eu/ (accessed on 1 March 2023).
- Li, Q.; Cui, J.; Jiang, W.; Jiao, Q.; Gong, L.; Zhang, J.; Shen, X. Monitoring of the fire in Muli County on March 28, 2020, based on high temporal-spatial resolution remote sensing techniques. Nat. Hazards Res. 2021, 1, 20–31. [Google Scholar] [CrossRef]
- Andalucian Environmental Portal. Environmental Information. Rediam Downloads MUCVA. Available online: https://portalrediam.cica.es/descargas?path=%2F01_CARACTERIZACION_TERRITORIO%2F06_USOS_COBERTURAS%2F02_MUCVA_25000 (accessed on 24 April 2023).
- Verdin, J.; Pedreros, D.; Eilerts, G. Normalized Differential Vegetation Index (NDVI). Wayback Machine. Available online: https://web.archive.org/web/20060924035407/https://earlywarning.usgs.gov/centralamerica/readme/FEWSNET-NDVI.doc (accessed on 5 November 2023).
- UN-SPIDER Knowledge Portal. Normalized Burn Ratio (NBR). Available online: https://un-spider.org/es/node/10959 (accessed on 23 May 2023).
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; Report No. RMRS-GTR-164-CD: LA 1-51; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; Available online: https://www.researchgate.net/publication/241687027_Landscape_Assessment_Ground_measure_of_severity_the_Composite_Burn_Index_and_Remote_sensing_of_severity_the_Normalized_Burn_Ratio (accessed on 23 May 2023).
- Zagalikis, G. Remote Sensing and GIS Applications in Wildfires. IntechOpen 2023, 1–21. [Google Scholar] [CrossRef]
- Puerta-Piñero, C.; Espelta, J.M.; Sánchez-Humanes, B.; Rodrigo, A.; Coll, L.; Brotons, L. History matters: Previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. For. Ecol. Manag. 2012, 279, 121–127. [Google Scholar] [CrossRef]
- Lestari, F.; Kim, K.; Adiwibowo, A.; Octaviani, D.F.; Fisher, M.; Yamashita, E. Improving Service Coverage and Response Times for Three-Wheeled Mobile Fire Units on Pari Island, Indonesia. Transp. Res. Rec. 2023, 2677, 682–693. [Google Scholar] [CrossRef]
- Wang, H.; Finney, M.A.; Song, Z.; Wang, Z.; Li, X. Ecological Techniques for wildfire mitigation: Two distinct fuelbreak approaches and their fusion. For. Ecol. Manag. 2021, 495, 119376. [Google Scholar] [CrossRef]
- Ascoli, D.; Moris, J.V.; Marchetti, M.; Sallustio, L. Land use change towards forests and wooded land correlates with large and frequent wildfires in Italy. Ann. Silvic. Res. 2021, 46, 177–188. [Google Scholar] [CrossRef]
- Pérez-Cabello, F.; Montorio, R.; Alves, D.B. Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Health 2021, 21, 100251. [Google Scholar] [CrossRef]
- Cansler, C.A.; Kane, V.R.; Hessburg, P.F.; Kane, J.T.; Jeronimo, S.M.; Lutz, J.A.; Povak, N.A.; Churchill, D.J.; Larson, A.J. Previous wildfires and management treatments Moderate subsequent fire severity. For. Ecol. Manag. 2022, 504, 119764. [Google Scholar] [CrossRef]
- Kete, S. Local community participation and volunteerism in wildfire area management: A systematic review. Turk. J. For. 2023, 24, 251–261. [Google Scholar] [CrossRef]
- To, P.L.; Eboreime, E.; Agyapong, V.I.O. The Impact of wildfires on Mental Health: A scoping review. Behav. Sci. 2021, 11, 126. [Google Scholar] [CrossRef]
- Moreno, M.T.G.; González, J.M.S. Analyzing the Dynamics of Forest Fires in Málaga Province: Assessing the Interplay of Vegetation and Human Influence on Regional Hazard Trends over Three Decades. Euro-Mediterr. J. Environ. Integr. 2021, 1–21. [Google Scholar] [CrossRef]
Data Source | Type |
---|---|
Andalucia Institute of Statistics and Cartography (IECA) | Shapefile and text |
National Geographic Information’s Download Center | Shapefile, raster, and text |
Environmental Information Network of Andalucia (REDIAM) | Shapefile, raster, and text |
Land Use Information System of Andalucia (SIOSE) | Text |
Spanish Institute of Statistics (INE) | Text |
National Orthophoto Plan (PNOA) | Raster |
Natural Heritage Information System of Andalucia (SIPNA) | Text |
Sentinel 2. Copernicus Browser | Raster |
Code Level 1 | Description Level 1 |
---|---|
1 | Built surfaces and infrastructures |
2 | Wet zones and water surfaces |
3 | Agricultural areas |
4 | Forest and natural areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Gómez, C.; Rodrigo-Comino, J. Designing a Multitemporal Analysis of Land Use Changes and Vegetation Indices to Assess the Impacts of Severe Forest Fires Before Applying Control Measures. Forests 2024, 15, 2036. https://doi.org/10.3390/f15112036
Muñoz-Gómez C, Rodrigo-Comino J. Designing a Multitemporal Analysis of Land Use Changes and Vegetation Indices to Assess the Impacts of Severe Forest Fires Before Applying Control Measures. Forests. 2024; 15(11):2036. https://doi.org/10.3390/f15112036
Chicago/Turabian StyleMuñoz-Gómez, Casandra, and Jesús Rodrigo-Comino. 2024. "Designing a Multitemporal Analysis of Land Use Changes and Vegetation Indices to Assess the Impacts of Severe Forest Fires Before Applying Control Measures" Forests 15, no. 11: 2036. https://doi.org/10.3390/f15112036
APA StyleMuñoz-Gómez, C., & Rodrigo-Comino, J. (2024). Designing a Multitemporal Analysis of Land Use Changes and Vegetation Indices to Assess the Impacts of Severe Forest Fires Before Applying Control Measures. Forests, 15(11), 2036. https://doi.org/10.3390/f15112036