Spatial Conservation Prioritization of Persian Squirrel Based on Habitat Suitability and Climate-Induced Forest Mortality Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Mortality Data
2.3. Habitat Suitability Data
2.4. Modelling Procedure
2.5. Spatial Conservation Prioritization
3. Results
3.1. Habitat Suitability and Forest Mortality Risk
3.2. Spatial Conservation Prioritization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef]
- Segan, D.B.; Murray, K.A.; Watson, J.E.M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 2016, 5, 12–21. [Google Scholar] [CrossRef]
- Hartmann, S.A.; Segelbacher, G.; Juiña, M.E.; Schaefer, H.M. Effects of habitat management can vary over time during the recovery of an endangered bird species. Biol. Conserv. 2015, 192, 154–160. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 2011, 11, 15–29. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 245–253. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Foden, W.; Midgley, G.F.; Hughes, G.; Bond, W.J.; Thuiller, W.; Hoffman, M.T.; Kaleme, P.; Underhill, L.G.; Rebelo, A.; Hannah, L. A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers. Distrib. 2007, 13, 645–653. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Chang. Biol. 2017, 23, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Rouault, G.; Candau, J.N.; Lieutier, F.; Nageleisen, L.M.; Martin, J.C.; Warzée, N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 2006, 63, 613–624. [Google Scholar] [CrossRef]
- Spiecker, H.; Kahle, H. Climate-driven tree growth and mortality in the Black Forest, Germany—Long-term observations. Glob. Chang. Biol. 2023, 29, 5908–5923. [Google Scholar] [CrossRef]
- Slinkina, O.A.; Mikhaylov, P.V.; Sultson, S.M.; Demidko, D.A.; Khizhniak, N.P.; Tatarintsev, A.I. Mapping Tree Mortality Caused by Siberian Silkmoth Outbreak Using Sentinel-2 Remote Sensing Data. Forests 2023, 14, 2436. [Google Scholar] [CrossRef]
- Guarín, A.; Taylor, A.H. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For. Ecol. Manag. 2005, 218, 229–244. [Google Scholar] [CrossRef]
- Hanson, P.J.; Weltzin, J.F. Drought disturbance from climate change: Response of United States forests. Sci. Total Environ. 2000, 262, 205–220. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Stephenson, N.L. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol. Lett. 2007, 10, 909–916. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef]
- Tai, X.; Trugman, A.T.; Anderegg, W.R.L. Linking remotely sensed ecosystem resilience with forest mortality across the continental United States. Glob. Chang. Biol. 2023, 29, 1096–1105. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, C.; Schneider, R.; Cyr, D.; McDowell, N.G.; Kneeshaw, D. Drought-induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob. Chang. Biol. 2023, 29, 2274–2285. [Google Scholar] [CrossRef]
- Aiba, S.I.; Kitayama, K. Effects of the 1997–19998 El Nino drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 2002, 18, 215–230. [Google Scholar] [CrossRef]
- Nishimua, T.B.; Suzuki, E.; Kohyama, T.; Tsuyuzaki, S. Mortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought. Plant Ecol. 2007, 188, 165–177. [Google Scholar] [CrossRef]
- Potts, M.D. Drought in a Bornean everwet rain forest. J. Ecol. 2003, 91, 467–474. [Google Scholar] [CrossRef]
- Slik, J.W.F. El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 2004, 141, 114–120. [Google Scholar] [CrossRef]
- Van Nieuwstadt, M.G.L.; Sheil, D. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J. Ecol. 2005, 93, 191–201. [Google Scholar] [CrossRef]
- Ding, Z.; Ji, B.; Yao, H.; Cheng, X.; Yu, S.; Sun, X.; Liu, S.; Xu, L.; Zhou, Y.; Shi, Y. An Analysis of the Factors Affecting Forest Mortality and Research on Forecasting Models in Southern China: A Case Study in Zhejiang Province. Forests 2023, 14, 2199. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Greenwood, S.; Ruiz-Benito, P.; Martínez-Vilalta, J.; Lloret, F.; Kitzberger, T.; Allen, C.D.; Fensham, R.; Laughlin, D.C.; Kattge, J.; Bönisch, G.; et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 2017, 20, 539–553. [Google Scholar] [CrossRef]
- Hartmann, H.; Moura, C.F.; Anderegg, W.R.L.; Ruehr, N.K.; Salmon, Y.; Allen, C.D.; Arndt, S.K.; Breshears, D.D.; Davi, H.; Galbraith, D.; et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018, 218, 15–28. [Google Scholar] [CrossRef]
- Koprowski, J.L. The response of tree squirrels to fragmentation: A review and synthesis. In Animal Conservation Forum; Cambridge University Press: Cambridge, UK, 2005; Volume 8, pp. 369–376. [Google Scholar]
- Silaeva, T.; Andreychev, A.; Kiyaykina, O.; Balčiauskas, L. Taxonomic and ecological composition of forest stands inhabited by forest dormouse Dryomys nitedula (Rodentia: Gliridae) in the Middle Volga. Biologia 2021, 76, 1475–1482. [Google Scholar] [CrossRef]
- Aghbolaghi, M.A.; Ahmadzadeh, F.; Kiabi, B.; Keyghobadi, N. The permanent inhabitant of the oak trees: Phylogeography and genetic structure of the Persian squirrel (Sciurus anomalus). Biol. J. Linn. Soc. 2019, 127, 197–212. [Google Scholar] [CrossRef]
- Koprowski, J.L.; Gavish, L.; Doumas, S.L. Sciurus anomalus (Rodentia: Sciuridae). Mamm Species 2016, 48, 48–58. [Google Scholar] [CrossRef]
- Yigit, N.; Kryštufek, B.; Sozen, M.; Bukhnikashvili, A.; Shenbrot, G. Sciurus anomalus (errata version published in 2017). IUCN Red List. Threat. Species 2016, eT20000A115154256. [Google Scholar] [CrossRef]
- Rima, P.; Aloise, G.; Cagnin, M.; Wauters, L. The use of species-specific cone remains of sympatric arboreal rodents to monitor their distribution. Ital. J. Zool. 2007, 74, 289–296. [Google Scholar] [CrossRef]
- Harrison, P.A.; Berry, P.M.; Butt, N.; New, M. Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environ. Sci. Policy 2006, 9, 116–128. [Google Scholar] [CrossRef]
- Thorington, R.W.; Koprowski, J.L.; Steele, M.A.; Whatton, J.F. Squirrels of the World; John Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Oshida, T.; Arslan, A.; Noda, M. Phylogenetic relationships among the Old World Sciurus squirrels. Folia Zool. Brno. 2009, 58, 14. [Google Scholar]
- Karami, M.; Ghadirian, T.; Faizolahi, K. The Atlas of Mammals of Iran; University of Tehran Press: Tehran, Iran, 2016. [Google Scholar]
- Fensham, R.J.; Holman, J.E. Temporal and spatial patterns in drought-related tree dieback in Australian savanna. J. Appl. Ecol. 1999, 36, 1035–1050. [Google Scholar]
- Franklin, J.F.; Shugart, H.H.; Harmon, M.E. Tree death as an ecological process. BioScience 1987, 37, 550–556. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Tohver, I.M.; Ray, D.; Moutinho, P.; Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 2007, 88, 2259–2269. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- O’Loingsigh, T.; McTainsh, G.H.; Tews, E.K.; Strong, C.L.; Leys, J.F.; Shinkfield, P.; Tapper, N.J. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records. Aeolian Res. 2014, 12, 29–40. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32, 66–77. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Zeng, Y.; Low, B.W.; Yeo, D.C.J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Model. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Giovanelli, J.G.R.; de Siqueira, M.F.; Haddad, C.F.B.; Alexandrino, J. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecol. Model. 2010, 221, 215–224. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J.; Hijmans, M.R.J. Package ‘dismo’. Circles 2017, 9, 1–68. [Google Scholar]
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Farber, O.; Kadmon, R. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Model. 2013, 160, 115–130. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychoanal. Rev. 1958, 65, 386. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hastie, T.J.; Tibshirani, R.J. Generalized additive models. In Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1990; Volume 43. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models. In Monographs on Statistics and Applied Probability; Chapman and Hall: London, UK, 1989; Volume 37. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1994, 89, 1255–1270. [Google Scholar] [CrossRef]
- Busby, J. BIOCLIM-a bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Carpenter, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, The Wadsworth Statistics and Probability Series; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- de Souza, R.A.; De Marco, P. The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon. Ecol. Model. 2014, 291, 250–259. [Google Scholar] [CrossRef]
- Santos, H.; Rodrigues, L.; Jones, G.; Rebelo, H. Using species distribution modelling to predict bat fatality risk at wind farms. Biol. Conserv. 2013, 157, 178–186. [Google Scholar] [CrossRef]
- Ziaie, H. A Field Guide to the Mammals of Iran; Tehran University Press: Tehran, Iran, 2011. [Google Scholar]
- Adams, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Karjalainen, T.; Pussinen, A.; Liski, J.; Nabuurs, G.J.; Eggers, T.; Lapveteläinen, T.; Kaipainen, T. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. For. Policy Econ. 2003, 5, 141–155. [Google Scholar] [CrossRef]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Glob. Chang. Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Dellasala, D.; Martin, A.; Spivak, R.; Schulke, T.; Bird, B.; Criley, M.; van Daalen, C.; Kreilick, J.; Brown, R.; Aplet, G. A citizen’s call for ecological forest restoration: Forest restoration principles and criteria. Ecol. Restor. 2003, 21, 15. [Google Scholar] [CrossRef]
- Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Smith, J.B. Setting priorities for adapting to climate change. Glob. Environ. Change 1997, 7, 251–264. [Google Scholar] [CrossRef]
Number | Forest Mortality | Habitat Suitability |
---|---|---|
1 | Mean Annual Temperature | Mean Annual Temperature |
2 | Mean Annual Precipitation | Mean Annual Precipitation |
3 | Reference Evapotranspiration [43] | Distance to residential areas |
4 | Standardized Precipitation Index (SPI) | Distance to Surface Water |
5 | Dust Storm Index (DSI) [44] | Distance to Roads |
6 | Geographic Aspect | Geographic Aspect |
7 | Percentage of Slope | Percentage of Slope |
8 | NDVI | NDVI |
9 | Distance to Agricultural Lands | Distance to Agricultural Lands |
10 | Distance to Surface Water | |
11 | Soil Moisture | |
12 | Soil PH | |
13 | Soil Organic Matter |
Model Number | Model Name | Reference |
---|---|---|
1 | Mahalanobis Distance | [54] |
2 | Artificial Neural Network (ANN) | [55] |
3 | Random Forest (RF) | [56] |
4 | Support Vector Machine (SVM) | [57] |
5 | Generalized Additive Model (GAM) | [58] |
6 | Generalized Linear Model (GLM) | [59] |
7 | Boosted Regression Tree (BRT) | [60] |
8 | Maximum Entropy (MaxEnt) | [49] |
9 | Flexible Discriminant Analysis (FDA) | [61] |
10 | Mixture Discriminant Analysis (MDA) | [61] |
11 | Bioclim | [62] |
12 | Domain | [63] |
13 | Multivariate Adaptive Regression Spline (MARS) | [64] |
14 | Environmental Niche Factor Analysis (ENFA) | [65] |
15 | Classification And Regression Tree (CART) | [66] |
Class Number | Forest Mortality Risk | Habitat Suitability | Range of Values |
---|---|---|---|
1 | No Risk | No Suitability | 0.1 > Values |
2 | Low Risk | Low Suitability | 0.1 ≤ Values ≤ 0.25 |
3 | Moderate Risk | Moderate Suitability | 0.25 < Values ≤ 0.5 |
4 | High Risk | High Suitability | 0.5 < Values ≤ 0.75 |
5 | Very High Risk | Very High Suitability | 0.75 < Values ≤ 1 |
Priority Class | Rules | |||
---|---|---|---|---|
Very High | F-M-R 1 Class Number | 5 | or | 4 |
And | And | |||
H-S 1 Class Number | 5 or 4 | 5 | ||
High | F-M-R Class Number | 3 or 2 | or | 4 or 3 |
And | And | |||
H-S Class Number | 5 | 4 | ||
Moderate | F-M-R Class Number | 2 | ||
And | ||||
H-S Class Number | 4 | |||
Low | F-M-R Class Number | 1 | ||
And | ||||
H-S Class Number | 4 or 5 | |||
No priority | F-M-R Class Number | 5 or 4 or 3 or 2 or 1 | ||
And | ||||
H-S Class Number | 1 or 2 or 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadirian Baharanchi, O.; Hemami, M.-R.; Yousefpour, R. Spatial Conservation Prioritization of Persian Squirrel Based on Habitat Suitability and Climate-Induced Forest Mortality Risk. Forests 2024, 15, 290. https://doi.org/10.3390/f15020290
Ghadirian Baharanchi O, Hemami M-R, Yousefpour R. Spatial Conservation Prioritization of Persian Squirrel Based on Habitat Suitability and Climate-Induced Forest Mortality Risk. Forests. 2024; 15(2):290. https://doi.org/10.3390/f15020290
Chicago/Turabian StyleGhadirian Baharanchi, Omid, Mahmoud-Reza Hemami, and Rasoul Yousefpour. 2024. "Spatial Conservation Prioritization of Persian Squirrel Based on Habitat Suitability and Climate-Induced Forest Mortality Risk" Forests 15, no. 2: 290. https://doi.org/10.3390/f15020290
APA StyleGhadirian Baharanchi, O., Hemami, M. -R., & Yousefpour, R. (2024). Spatial Conservation Prioritization of Persian Squirrel Based on Habitat Suitability and Climate-Induced Forest Mortality Risk. Forests, 15(2), 290. https://doi.org/10.3390/f15020290