Seed Availability and Small Mammal Populations: Insights from Mediterranean Forests
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Small Mammal Sampling
2.3. Seed Availability Data
2.4. Data Analysis
3. Results
3.1. Seed Availability
3.2. Small Mammal Captures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Complete Species Model Tables
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
(Intercept) | 0.92 *** | 1.03 * | 0.92 *** |
(0.01) | (0.40) | (0.01) | |
SeasonSpring | 0.82 *** | 0.77 *** | 0.84 *** |
(0.01) | (0.19) | (0.01) | |
Seed of the same year | 0.29 *** | 0.38 *** | |
(0.01) | (0.01) | ||
Seed of the previous year | −0.03 * | −0.14 | −0.03 * |
(0.01) | (0.15) | (0.01) | |
Spring: seed same year | −0.18 *** | ||
(0.01) | |||
Spring: seed previous year | 0.59 *** | 0.57 ** | 0.56 *** |
(0.01) | (0.18) | (0.01) | |
AICc | 632.41 | 633.44 | 634.04 |
Delta | 0.00 | 1.03 | 1.63 |
Dispersion ratio | 0.88 | 0.87 | 0.91 |
Num. Obs. | 114 | 114 | 114 |
R2m | 0.17 | 0.14 | 0.17 |
R2c | 0.62 | 0.53 | 0.62 |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
(Intercept) | −0.43 *** | −0.24 | −0.27 |
(0.01) | (0.64) | (0.66) | |
SeasonSpring | −0.41 | −0.39 | |
(0.32) | (0.33) | ||
Seed of the previous year | 0.44 *** | 0.40 * | 0.55 * |
(0.01) | (0.19) | (0.22) | |
Spring: seed previous year | −0.36 | ||
(0.30) | |||
AICc | 308.97 | 309.63 | 310.47 |
Delta | 0.00 | 0.66 | 1.50 |
Dispersion Ratio | 0.76 | 0.77 | 0.75 |
Num. Obs. | 114 | 114 | 114 |
R2m | 0.05 | 0.06 | 0.06 |
R2c | 0.47 | 0.46 | 0.48 |
Order 0 (Richness) | Order 1 (Shannon) | Order 2 (Simpson) | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 1 | |
(Intercept) | 1.91 *** | 2.11 *** | 1.90 *** | 0.50 ** | 0.50 ** | 0.31 ** |
(0.44) | (0.42) | (0.38) | (0.16) | (0.19) | (0.10) | |
SeasonSpring | 0.39 * | 0.37 * | 0.10 * | |||
(0.15) | (0.16) | (0.04) | ||||
Seed of the previous year | 0.25 ** | 0.24 ** | ||||
(0.09) | (0.09) | |||||
AICc | 198.71 | 200.63 | 200.70 | 75.94 | 77.79 | −3.34 |
Delta | 0.00 | 1.92 | 1.99 | 0.00 | 1.85 | 0.00 |
Num. Obs. | 80 | 80 | 80 | 80 | 80 | 80 |
R2m | 0.09 | 0.06 | 0.04 | 0.00 | 0.01 | 0.00 |
R2c | 0.58 | 0.54 | 0.50 | 0.46 | 0.49 | 0.48 |
References
- Hanski, I. Metapopulation Ecology; Metapopulation Ecology; OUP Oxford: Oxford, UK, 1999; ISBN 9780198540656. [Google Scholar]
- Auffret, A.G.; Plue, J.; Cousins, S.A.O. The Spatial and Temporal Components of Functional Connectivity in Fragmented Landscapes. Ambio 2015, 44, 51–59. [Google Scholar] [CrossRef]
- Howe, H.F.; Miriti, M.N. When Seed Dispersal Matters. Bioscience 2004, 54, 651–660. [Google Scholar] [CrossRef]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed Banks and Seed Dispersal: Important Topics in Restoration Ecology. Acta Bot. Neerl. 1996, 45, 461–490. [Google Scholar] [CrossRef]
- Qiu, T.; Aravena, M.-C.; Ascoli, D.; Bergeron, Y.; Bogdziewicz, M.; Boivin, T.; Bonal, R.; Caignard, T.; Cailleret, M.; Calama, R.; et al. Masting Is Uncommon in Trees That Depend on Mutualist Dispersers in the Context of Global Climate and Fertility Gradients. Nat. Plants 2023, 9, 1044–1056. [Google Scholar] [CrossRef]
- Koskela, E. Offspring Growth, Survival and Reproductive Success in the Bank Vole: A Litter Size Manipulation Experiment. Oecologia 1998, 115, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Karels, T.J.; Byrom, A.E.; Boonstra, R.; Krebs, C.J. The Interactive Effects of Food and Predators on Reproduction and Overwinter Survival of Arctic Ground Squirrels. J. Anim. Ecol. 2000, 69, 235–247. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is Habitat Fragmentation Good for Biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Török, P.; Kelemen, A.; Bede, Á.; Csathó, A.I.; Tóthmérész, B. Landscape and Habitat Filters Jointly Drive Richness and Abundance of Specialist Plants in Terrestrial Habitat Islands. Landsc. Ecol. 2018, 33, 1117–1132. [Google Scholar] [CrossRef]
- Godó, L.; Valkó, O.; Borza, S.; Deák, B. A Global Review on the Role of Small Rodents and Lagomorphs (Clade Glires) in Seed Dispersal and Plant Establishment. Glob. Ecol. Conserv. 2022, 33, e01982. [Google Scholar] [CrossRef]
- Cardillo, M.; Mace, G.M.; Jones, K.E.; Bielby, J.; Bininda-Emonds, O.R.P.; Sechrest, W.; Orme, C.D.L.; Purvis, A. Multiple Causes of High Extinction Risk in Large Mammal Species. Science 2005, 309, 1239–1241. [Google Scholar] [CrossRef]
- Ripple, W.J.; Newsome, T.M.; Wolf, C.; Dirzo, R.; Everatt, K.T.; Galetti, M.; Hayward, M.W.; Kerley, G.I.H.; Levi, T.; Lindsey, P.A.; et al. Collapse of the World’s Largest Herbivores. Sci. Adv. 2023, 1, e1400103. [Google Scholar] [CrossRef] [PubMed]
- Burgin, C.; Wilson, D.; Mittermeier, R.; Rylands, A.; Lacher, T.; Sechrest, W. Illustrated Checklist of the Mammals of the World; Lynx Editions: Cerdanyola del Vallès, Spain, 2020. [Google Scholar]
- Delibes-Mateos, M.; Smith, A.T.; Slobodchikoff, C.N.; Swenson, J.E. The Paradox of Keystone Species Persecuted as Pests: A Call for the Conservation of Abundant Small Mammals in Their Native Range. Biol. Conserv. 2011, 144, 1335–1346. [Google Scholar] [CrossRef]
- Alves, P.C.; Ferrand, N.; Hackländer, K. Lagomorph Biology: Evolution, Ecology, and Conservation; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ferguson-Lees, J.; Christie, D.A. Raptors of the World; Princenton Field Guides; Houghton Mifflin: Boston, MA, USA, 2001; ISBN 9780618127627. [Google Scholar]
- Wu, R.; Chai, Q.; Zhang, J.; Zhong, M.; Liu, Y.; Wei, X.; Pan, D.; Shao, X. Impacts of Burrows and Mounds Formed by Plateau Rodents on Plant Species Diversity on the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 117–123. [Google Scholar] [CrossRef]
- Schnurr, J.L.; Canham, C.D.; Ostfeld, R.S.; Inouye, R.S. Neighborhood Analyses of Small-Mammal Dynamics: Impacts on Seed Predation and Seedling Establishment. Ecology 2004, 85, 741–755. [Google Scholar] [CrossRef]
- Rosemier, J.N.; Storer, A.J. Assessing the Responses of Native Small Mammals to an Incipient Invasion of Beech Bark Disease through Changes in Seed Production of American Beech (Fagus grandifolia). Am. Midl. Nat. 2010, 164, 238–259. [Google Scholar] [CrossRef]
- Andrzejewski, R. Supplementary Food and the Winter Dynamics of Bank Vole Populations. Acta Theriol. 1975, 20, 23–40. [Google Scholar] [CrossRef]
- Negus, N.C.; Pinter, A.J. Reproductive Responses of Microtus Montanus to Plants and Plant Extracts in the Diet. J. Mammal. 1966, 47, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.D.; Knops, J.M.H. Patterns of Annual Seed Production by Northern Hemisphere Trees: A Global Perspective. Am. Nat. 2000, 155, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Sork, V.L. Mast Seeding in Perennial Plants: Why, How, Where? Annu. Rev. Ecol. Syst. 2002, 33, 427–447. [Google Scholar] [CrossRef]
- Koenig, W.D.; Knops, J.M.H.; Carmen, W.J. Testing the Environmental Prediction Hypothesis for Mast-Seeding in California Oaks. Can. J. For. Res. 2010, 40, 2115–2122. [Google Scholar] [CrossRef]
- Gea-izquierdo, G.; Cañellas, I.; Montero, G. Producción de Bellota en las Dehesas Españolas de Encina. Investig. Agrar. Sist. Recur. For. 2006, 15, 339–354. [Google Scholar]
- Bogdziewicz, M.; Szymkowiak, J.; Fernández-Martínez, M.; Peñuelas, J.; Espelta, J.M. The Effects of Local Climate on the Correlation between Weather and Seed Production Differ in Two Species with Contrasting Masting Habit. Agric. Meteorol. 2019, 268, 109–115. [Google Scholar] [CrossRef]
- Pires, M.M.; Galetti, M.; Donatti, C.I.; Pizo, M.A.; Dirzo, R.; Guimarães, P.R. Reconstructing Past Ecological Networks: The Reconfiguration of Seed-Dispersal Interactions after Megafaunal Extinction. Oecologia 2014, 175, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Dickman, C. Rodent-Ecosystem Relationships: A Review. In Ecologically-Based Management of Rodent Pests; Singleton, G.R., Hinds, L.A., Leirs, H., Zhang, Z., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 1999; pp. 113–133. ISBN 1-86320-262-5. [Google Scholar]
- Selva, N.; Hobson, K.A.; Cortés-Avizanda, A.; Zalewski, A.; Donázar, J.A. Mast Pulses Shape Trophic Interactions between Fluctuating Rodent Populations in a Primeval Forest. PLoS ONE 2012, 7, e51267. [Google Scholar] [CrossRef]
- Watts, C.H.S. The Regulation of Wood Mouse (Apodemus sylvaticus) Numbers in Wytham Woods, Berkshire. J. Anim. Ecol. 1969, 38, 285–304. [Google Scholar] [CrossRef]
- Pucek, Z.; Jedrzejewski, W.; Jedrzejewska, B.; Pucek, M. Rodent Population Dynamics in a Primeval Deciduous Forest (BiałOwieża National Park) in Relation to Weather, Seed Crop, and Predation. Acta Theriol. 1993, 38, 199–232. [Google Scholar] [CrossRef]
- Shimada, T.; Saitoh, T. Re-evaluation of the Relationship between Rodent Populations and Acorn Masting: A Review from the Aspect of Nutrients and Defensive Chemicals in Acorns. Popul. Ecol. 2006, 48, 341–352. [Google Scholar] [CrossRef]
- Jensen, T.S. Seed-Seed Predator Interactions of European Beech, Fagus Silvatica and Forest Rodents, Clethrionomys Glareolus and Apodemus flavicollis. Oikos 1985, 44, 149. [Google Scholar] [CrossRef]
- Selås, V.; Framstad, E.; Rolstad, J.; Sonerud, G.A.; Spidsø, T.K.; Wegge, P. Bilberry Seed Production Explains Spatiotemporal Synchronicity in Bank Vole Population Fluctuations in Norway. Ecol. Res. 2021, 36, 409–419. [Google Scholar] [CrossRef]
- Jensen, T.S. Seed Production and Outbreaks of Non-Cyclic Rodent Populations in Deciduous Forests. Oecologia 1982, 54, 184–192. [Google Scholar] [CrossRef]
- Nóbrega, E.K.; Vidal-Cardos, R.; Muñoz, A.; Ferrandiz-Rovira, M. Impacts of Human Forest Management on Seed Dispersal Patterns by Scatter-Hoarding Rodents. For. Int. J. For. Res. 2023, 97, 234–242. [Google Scholar] [CrossRef]
- Sunyer, P.; Muñoz, A.; Mazerolle, M.J.; Bonal, R.; Espelta, J.M. Wood Mouse Population Dynamics: Interplay among Seed Abundance Seasonality, Shrub Cover and Wild Boar Interference. Mamm. Biol. 2016, 81, 372–379. [Google Scholar] [CrossRef]
- Juškaitis, R. Spatial Distribution of the Yellow-Necked Mouse (Apodemus flavicollis) in Large Forest Areas and Its Relation with Seed Crop of Forest Trees. Mamm. Biol. 2002, 67, 206–211. [Google Scholar] [CrossRef]
- Bartrina, C. Relationships between Meteorological Conditions, Seed Production and Edible Dormouse (Glis glis L., 1766) Reproduction at the North-Ern East of the Iberian Peninsula. Master’s Thesis, Universitat Autònoma de Barcelona, Bellaterra, Spain, 2021. [Google Scholar]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Garcia-Barreda, S.; Valeriano, C.; Camarero, J.J. Drought Constrains Acorn Production and Tree Growth in the Mediterranean Holm Oak and Triggers Weak Legacy Effects. Agric. Meteorol. 2023, 334, 109435. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Serra-Maluquer, X.; Gazol, A.; Sangüesa-Barreda, G.; Sánchez-Salguero, R.; Rozas, V.; Colangelo, M.; Gutiérrez, E.; Camarero, J.J. Geographically Structured Growth Decline of Rear-Edge Iberian Fagus Sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems 2019, 22, 1325–1337. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J. Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests 2021, 12, 603. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Delpierre, N.; Dufrêne, E.; Cecchini, S.; Macé, S.; Croisé, L.; Nicolas, M. Assessing the Roles of Temperature, Carbon Inputs and Airborne Pollen as Drivers of Fructification in European Temperate Deciduous Forests. Eur. J. Res. 2018, 137, 349–365. [Google Scholar] [CrossRef]
- Puig-Gironès, R.; Muriana, M.; Real, J.; Sabaté, S. Unravelling the Influence of Annual Weather Conditions and Mediterranean Habitat Types on Acorn Production, Availability and Predation. Ecol. Manag. 2023, 543, 121149. [Google Scholar] [CrossRef]
- Vacchiano, G.; Hacket-Pain, A.; Turco, M.; Motta, R.; Maringer, J.; Conedera, M.; Drobyshev, I.; Ascoli, D. Spatial Patterns and Broad-Scale Weather Cues of Beech Mast Seeding in Europe. New Phytol. 2017, 215, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, A.; Waldner, P.; Apuhtin, V.; Aytar, F.; Benham, S.; Bussotti, F.; Eichhorn, J.; Eickenscheidt, N.; Fabianek, P.; Falkenried, L.; et al. Impact of Weather Cues and Resource Dynamics on Mast Occurrence in the Main Forest Tree Species in Europe. Ecol. Manag. 2018, 429, 336–350. [Google Scholar] [CrossRef]
- Camarero, J.J.; Colangelo, M.; Gazol, A.; Azorín-Molina, C. Drought and Cold Spells Trigger Dieback of Temperate Oak and Beech Forests in Northern Spain. Dendrochronologia 2021, 66, 125812. [Google Scholar] [CrossRef]
- Thiel, D.; Kreyling, J.; Backhaus, S.; Beierkuhnlein, C.; Buhk, C.; Egen, K.; Huber, G.; Konnert, M.; Nagy, L.; Jentsch, A. Different Reactions of Central and Marginal Provenances of Fagus Sylvatica to Experimental Drought. Eur. J. Res. 2014, 133, 247–260. [Google Scholar] [CrossRef]
- McKone, M.J.; Kelly, D.; Lee, W.G. Effect of Climate Change on Mast-Seeding Species: Frequency of Mass Flowering and Escape from Specialist Insect Seed Predators. Glob. Chang. Biol. 1998, 4, 591–596. [Google Scholar] [CrossRef]
- Pérez-Ramos, M.; Ourcival, J.M.; Limousin, J.M.; Rambal, S. Mast Seeding under Increasing Drought: Results from a Long-Term Data Set and from a Rainfall Exclusion Experiment. Ecology 2010, 97, 3051–3068. [Google Scholar] [CrossRef] [PubMed]
- Torre, I.; Raspall, A.; Arrizabalaga, A.; Díaz, M. SEMICE: An Unbiased and Powerful Monitoring Protocol for Small Mammals in the Mediterranean Region. Mamm. Biol. 2018, 88, 161–167. [Google Scholar] [CrossRef]
- Zwolak, R.; Bogdziewicz, M.; Rychlik, L. Beech Masting Modifies the Response of Rodents to Forest Management. Ecol. Manag. 2016, 359, 268–276. [Google Scholar] [CrossRef]
- Torre, I.; Jaime-González, C.; Díaz, M. Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter. Sustainability 2022, 14, 1562. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Viljugrein, H.; Jedrzejewski, W.; Mysterud, A.; Pucek, Z. Population Dynamics of Clethrionomys Glareolus and Apodemus flavicollis: Seasonal Components of Density Dependence and Density Independence. Acta Theriol. 2002, 47, 39–67. [Google Scholar] [CrossRef]
- Selås, V. Evidence for Different Bottom-up Mechanisms in Wood Mouse (Apodemus sylvaticus) and Bank Vole (Myodes glareolus) Population Fluctuations in Southern Norway. Mamm. Res. 2020, 65, 267–275. [Google Scholar] [CrossRef]
- Fischer, C.; Gayer, C.; Kurucz, K.; Riesch, F.; Tscharntke, T.; Batáry, P. Ecosystem Services and Disservices Provided by Small Rodents in Arable Fields: Effects of Local and Landscape Management. J. Appl. Ecol. 2018, 55, 548–558. [Google Scholar] [CrossRef]
- Ssuuna, J.; Makundi, R.H.; Isabirye, M.; Sabuni, C.A.; Babyesiza, W.S.; Mulungu, L.S. Rodent Species Composition, Relative Abundance, and Habitat Association in the Mabira Central Forest Reserve, Uganda. J. Vertebr. Biol. 2020, 69, 20021.1-15. [Google Scholar] [CrossRef]
- Torre, I.; Bastardas-Llabot, J.; Arrizabalaga, A.; Díaz, M. Population Dynamics of Small Endotherms under Global Change: Greater White-Toothed Shrews Crocidura russula in Mediterranean Habitats. Sci. Total Environ. 2020, 705, 135799. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, W.I. The use of arboreal runways by the woodland rodents, Apodemus sylvaticus (L.), A. flavicollis (Melchior) and Clethrionomys glareolus (Schreber). Mamm. Rev. 1980, 10, 189–195. [Google Scholar] [CrossRef]
- Buesching, C.D.; Newman, C.; Twell, R.; Macdonald, D.W. Reasons for Arboreality in Wood Mice Apodemus sylvaticus and Bank Voles Myodes glareolus. Mamm. Biol. 2008, 73, 318–324. [Google Scholar] [CrossRef]
- Khammes, N.; Aulagnier, S. Diet of the Wood Mouse, Apodemus sylvaticus in Three Biotopes of Kabylie of Djurdjura (Algeria). Folia Zool. Brno 2007, 56, 243–252. [Google Scholar]
- Brahmi, K.; Aulagnier, S.; Slimani, S.; Mann, C.S.; Doumandji, S.; Baziz, B. Diet of the Greater White-Toothed Shrew Crocidura russula (Mammalia: Soricidae) in Grande Kabylie (Algeria). Ital. J. Zool. 2012, 79, 239–245. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; del Río, S.; Díaz González, T.E.; Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula; Loidi, J., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, pp. 29–80. ISBN 978-3-319-54784-8. [Google Scholar]
- Meteocat Meteocat (Servei Meteorològic de Catalunya). Available online: https://www.meteo.cat/ (accessed on 23 August 2023).
- de Bolòs, O. La Vegetació Del Montseny; Diputació de Barcelona: Barcelona, Spain, 1983. [Google Scholar]
- Ferrandiz-Rovira, M.; Freixas, L.; Torre, I.; Míguez, S.; Arrizabalaga, A. Male-Biased Litter Sex Ratio in the Southernmost Iberian Population of Edible Dormouse: A Strategy against Isolation? Anim. Biol. 2016, 66, 415–425. [Google Scholar] [CrossRef]
- Panareda, J.M.; Pintó, J.; Mas, R. La Vegetación Forestal En El Macizo Del Montnegre (Cordillera Litoral Catalana): Robledales de Quercus Canariensis y Quercus Petraea, Encinares y Alcornocales. In Proceedings of the I Congreso de la Federación International de Fitosociología, Oviedo, Spain, 26–28 September 1996. [Google Scholar]
- Meteomar Meteomar. Predicció Meteorològica Del Maresme. Available online: http://www.meteomar.cat/ (accessed on 23 August 2023).
- Torre, I.; López-Baucells, A.; Stefanescu, C.; Freixas, L.; Flaquer, C.; Bartrina, C.; Coronado, A.; López-Bosch, D.; Mas, M.; Míguez, S.; et al. Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions. Diversity 2021, 13, 454. [Google Scholar] [CrossRef]
- Carrilho, M.; Teixeira, D.; Santos-Reis, M.; Rosalino, L. Small Mammal Abundance in Mediterranean Eucalyptus Plantations: How Shrub Cover Can Really Make a Difference. Ecol. Manag. 2017, 391, 256–263. [Google Scholar] [CrossRef]
- Massoud, D.; Lao-Pérez, M.; Ortega, E.; Burgos, M.; Jiménez, R.; Barrionuevo, F.J. Divergent Seasonal Reproductive Patterns in Syntopic Populations of Two Murine Species in Southern Spain, Mus Spretus and Apodemus sylvaticus. Animals 2021, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Caceres, N.C.; Nápoli, R.P.; Hannibal, W. Differential Trapping Success for Small Mammals Using Pitfall and Standard Cage Traps in a Woodland Savannah Region of Southwestern Brazil. Mammalia 2011, 75, 45–52. [Google Scholar] [CrossRef]
- Nicolas, V.; Colyn, M. Relative Efficiency of Three Types of Small Mammal Traps in an African Rainforest. Belg. J. Zool. 2006, 136, 107–111. [Google Scholar]
- Torre, I.; Freixas, L.; Arrizabalaga, A.; Díaz, M. The Efficiency of Two Widely Used Commercial Live-Traps to Develop Monitoring Protocols for Small Mammal Biodiversity. Ecol. Indic. 2016, 66, 481–487. [Google Scholar] [CrossRef]
- Machtinger, E.T.; Williams, S.C. Practical Guide to Trapping Peromyscus Leucopus (Rodentia: Cricetidae) and Peromyscus Maniculatus for Vector and Vector-Borne Pathogen Surveillance and Ecology. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Torre, I.; Bustamante, P.; Flaquer, C.; Oliveira, F. Is Bedding Material a More Effective Thermal Insulator than Trap Cover for Small Mammal Trapping? A Field Experiment. J. Therm. Biol. 2023, 118, 103738. [Google Scholar] [CrossRef] [PubMed]
- Gurnell, J.; Flowerdew, J. Live Trapping Small Mammals. A Practical Guide; Mammal Society: London, UK, 2019; Volume 3, ISBN 978-0-9935673-5-3. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Statistics for Biology and Health; Springer: New York, NY, USA, 2009; ISBN 9780387874586. [Google Scholar]
- R Core Team. Stats: The R Stats Package; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Mallorie, H.C.; Flowerdew, J.R. Woodland Small Mammal Population Ecology in Britain: A Preliminary Review of the Mammal Society Survey of Wood Mice Apodemus sylvaticus and Bank Voles Clethrionomys Glareolus, 1982–1987. Mamm Rev 1994, 24, 1–15. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; SAGE Publications: Thousand Oaks, CA, USA, 2014; ISBN 141297514X. [Google Scholar]
- Kelly, D. The Evolutionary Ecology of Mast Seeding. Trends Ecol. Evol. 1994, 9, 465–470. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Fernández-Martínez, M.; Bonal, R.; Belmonte, J.; Espelta, J.M. The Moran Effect and Environmental Vetoes: Phenological Synchrony and Drought Drive Seed Production in a Mediterranean Oak. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171784. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Garbulsky, M.; Peñuelas, J.; Peguero, G.; Espelta, J.M. Temporal Trends in the Enhanced Vegetation Index and Spring Weather Predict Seed Production in Mediterranean Oaks. Plant Ecol. 2015, 216, 1061–1072. [Google Scholar] [CrossRef]
- Díaz, M.; Torre, I.; Arrizabalaga, A. Relative Roles of Density and Rainfall on the Short-Term Regulation of Mediterraneanwood Mouse Apodemus sylvaticus Populations. Acta Theriol. 2010, 55, 251–260. [Google Scholar] [CrossRef]
- Oro, D.; Sanz-Aguilar, A.; Carbonell, F.; Grajera, J.; Torre, I. Multi-Species Prey Dynamics Influence Local Survival in Resident and Wintering Generalist Predators. Oecologia 2021, 197, 437–446. [Google Scholar] [CrossRef]
- Lesnoff, M.; Lancelot, R. aods3: Analysis of Overdispersed Data Using S3 Methods; R Package Version 0.4-1. 2012. Available online: https://cran.r-project.org/package=aods3 (accessed on 3 February 2024).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package; R Package Version 2.6-4. 2022. Available online: https://cran.r-project.org/package=vegan (accessed on 14 February 2024).
- Barton, K. MuMIn: Multi-Model Inference. 2009. Available online: http://r-forge.r-project.org/projects/mumin/ (accessed on 15 February 2024).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Espelta, J.M.; Cortés, P.; Molowny-Horas, R.; Sánchez-Humanes, B.; Retana, J. Masting Mediated by Summer Drought Reduces Acorn Predation in Mediterranean Oak Forests. Ecology 2008, 89, 805–817. [Google Scholar] [CrossRef]
- Perea, R. Dispersión y Predación de Semillas Por La Fauna: Implicaciones En La Regeneración Forestal de Bosques Templados. Ecosistemas 2012, 21, 224–229. [Google Scholar]
- Sánchez-González, B.; Navarro-Castilla, A.; Hernández, M.C.; Barja, I. Ratón de Campo—Apodemus sylvaticus. In Virtual Encyclopaedia of Spanish Vertebrates; Salvador, A., Barja, I., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2016. [Google Scholar]
- Hansson, L. The Food of Bank Voles, Wood Mice and Yellow-Necked Mice. Symp. Zool. Soc. Lond. 1985, 55, 141–168. [Google Scholar]
- Brouard, M.J.; Knowles, S.C.L.; Dressen, S.; Coulson, T.; Malo, A.F. Factors Affecting Woodland Rodent Growth. J. Zool. 2020, 312, 174–182. [Google Scholar] [CrossRef]
- Zwolak, R.; Clement, D.; Sih, A.; Schreiber, S.J. Mast Seeding Promotes Evolution of Scatter-Hoarding. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200375. [Google Scholar] [CrossRef] [PubMed]
- Soriguer, R.; Amat, J. Datos Sobre La Biología y Dinámica Mumérica de Una Población de Ratones de Campo (Apodemus sylvaticus) En Andalucía Occidental. Boletín Estac. Cent. Ecol. 1979, 8, 79–83. [Google Scholar]
- Díaz, M.; Santos, T.; Tellería, J. Effects of Forest Fragmentation on the Winter Body Condition and Population Parameters of an Habitat Generalist, the Wood Mouse Apodemus sylvaticus: A Test of Hypotheses. Acta Oecologica 1999, 20, 39–49. [Google Scholar] [CrossRef]
- Arrizabalaga, A.; Torre, I. Apodemus flavicollis (Melchior, 1834). In Atlas Y Libro Rojo De Los Mamíferos Terrestres de España; Palomo, L.J., Gisbert, J., Blanco, J.C., Eds.; Dirección General para la Biodiversidad-SECEM-SECEMU: Madrid, Spain, 2007; pp. 445–448. [Google Scholar]
- Hernández, M.C. Ratón Leonado—Apodemus flavicollis. In Virtual Encyclopaedia of Spanish Vertebrates; López, P., Martín, J., Barja, I., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2019. [Google Scholar]
- Urgoiti, J.; MuÑoz, A.; Espelta, J.M.; Bonal, R. Distribution and Space Use of Seed-Dispersing Rodents in Central Pyrenees: Implications for Genetic Diversity, Conservation and Plant Recruitment. Integr. Zool. 2018, 13, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Regalado, I.; Comas, L. Nuevos Datos Sobre La Distribución y Hábitats Del Ratón Leonado (Apodemus flavicollis) En Catalunya. Resúmenes VI Jorn. SECEM 2003, 21, 146. [Google Scholar]
- Stradiotto, A.; Nieder, L.; Stradiotto, F. Spatial Behaviour of the Yellow-Necked Mouse (Apodemus flavicollis, Melchior 1834) at Contrasting Population Density and Resource Availability. Ph.D. Thesis, Università degli Studi di Parma, Dipartimento di Biologia evolutiva e funzionale, Parma, Italy, 2008. Available online: https://hdl.handle.net/1889/944 (accessed on 23 February 2024).
- López-Fuster, M.J. Crocidura russula. In Atlas And Red Book Of The Terrestrial Mammals Of Spain; Palomo, L.J., Gisbert, J., Blanco, J.C., Eds.; Dirección Genral para la Biodiversidad-SECEM-SECEMU: Madrid, Spain, 2007. [Google Scholar]
- Torre, I.; Arrizabalaga, A. Habitat Preferences of the Bank Vole Myodes glareolus in a Mediterranean Mountain Range. Acta Theriol. 2008, 53, 241–250. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Marino, S.; Bonal, R.; Zwolak, R.; Steele, M.A. Rapid Aggregative and Reproductive Responses of Weevils to Masting of North American Oaks Counteract Predator Satiation. Ecology 2018, 99, 2575–2582. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Espelta, J.M.; Muñoz, A.; Aparicio, J.M.; Bonal, R. Effectiveness of Predator Satiation in Masting Oaks Is Negatively Affected by Conspecific Density. Oecologia 2018, 186, 983–993. [Google Scholar] [CrossRef]
- Jakub, K.; Peter, K.; Filip, T.; Ševčík, M.; Ivan, B. Diet of Shrews (Soricidae) in Urban Environment (Nitra, Slovakia). Rend. Lincei 2017, 28, 559–567. [Google Scholar] [CrossRef]
- Bonal, R.; Muñoz, A.; María Espelta, J. Mismatch between the Timing of Oviposition and the Seasonal Optimum. The Stochastic Phenology of Mediterranean Acorn Weevils. Ecol. Entomol. 2010, 35, 270–278. [Google Scholar] [CrossRef]
- Jimenez-Pino, A.; Maistrello, L.; Lopez-Martinez, M.A.; Ocete-Rubio, M.E.; Soria-Iglesias, F.J. Distribución Espacial de Cydia Fagiglandana (Zeller) En Una Dehesa de Encinas (Quercus ilex L.). Span. J. Agric. Res. 2011, 9, 570–579. [Google Scholar] [CrossRef]
- Alley, J.C.; Berben, P.H.; Dugdale, J.S.; Fitzgerald, B.M.; Knightbridge, P.I.; Meads, M.J.; Webster, R.A. Responses of Litter-dwelling Arthropods and House Mice to Beech Seeding in the Orongorongo Valley, New Zealand. J. R. Soc. N. Z. 2001, 31, 425–452. [Google Scholar] [CrossRef]
- Torre, I.; Díaz, M.; Arrizabalaga, A. Additive Effects of Climate and Vegetation Structure on the Altitudinal Distribution of Greater White-Toothed Shrews Crocidura russula in a Mediterranean Mountain Range. Acta Theriol. 2014, 59, 139–147. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Assessment of the Impacts of Climate Change on Mediterranean Terrestrial Ecosystems Based on Data from Field Experiments and Long-Term Monitored Field Gradients in Catalonia. Env. Exp. Bot. 2018, 152, 49–59. [Google Scholar] [CrossRef]
- Boada, M. Manifestacions Del Canvi Ambiental Global al Montseny; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2002; ISBN 8469980165. [Google Scholar]
- García-Mozo, H.; Mestre, A.; Galán, C. Phenological Trends in Southern Spain: A Response to Climate Change. Agric. Meteorol. 2010, 150, 575–580. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Belmonte, J.; Maria Espelta, J. Masting in Oaks: Disentangling the Effect of Flowering Phenology, Airborne Pollen Load and Drought. Acta Oecologica 2012, 43, 51–59. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Comas, P. Changed Plant and Animal Life Cycles from 1952 to 2000 in the Mediterranean Region. Glob Chang Biol 2002, 8, 531–544. [Google Scholar] [CrossRef]
- Sánchez-Humanes, B.; Espelta, J.M. Increased Drought Reduces Acorn Production in Quercus Ilex Coppices: Thinning Mitigates This Effect but Only in the Short Term. For. Int. J. For. Res. 2011, 84, 73–82. [Google Scholar] [CrossRef]
- Araújo, M.B.; Guilhaumon, F.; Rodríguez, D.; Pozo, I.; Gómez, R. Impactos, Vulnerabilidad y Adaptación al Cambio Climático de La Biodiversidad Española 2. Fauna de Vertebrados. Proyecciones de Las Áreas de Distribución Potencial de La Fauna de Vertebrados de La España Peninsular Por Efecto Del Cambio Climático; Ministry of Environment, and Rural and Marine Affairs: Madrid, Spain, 2011.
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Newbold, T.; Oppenheimer, P.; Etard, A.; Williams, J.J. Tropical and Mediterranean Biodiversity Is Disproportionately Sensitive to Land-Use and Climate Change. Nat. Ecol. Evol. 2020, 4, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.D.; Lightfoot, D.C. Interactive Effects of Keystone Rodents on the Structure of Desert Grassland Arthropod Communities. Ecography 2007, 30, 515–525. [Google Scholar] [CrossRef]
Plot_ID | Name | Vegetation | Altitude | Scrub | Forest | Urban |
---|---|---|---|---|---|---|
1 | Alzinar Sot del Fangar | Quercus | 516 | 3.62% | 95.57% | 0.82% |
2 | Riera de Vallgorguina | Quercus | 193 | 10.32% | 80.58% | 9.10% |
3 | Roureda del Turó Gros | Quercus | 750 | 0.00% | 100.00% | 0.00% |
4 | Turó de Miralles | Quercus | 257 | 5.39% | 94.61% | 0.00% |
5 | Avetosa de Passavets | Abies–Fagus | 1442 | 9.86% | 90.14% | 0.00% |
6 | Fageda de la Cortada | Fagus | 1200 | 25.58% | 74.42% | 0.00% |
7 | Fageda de les Valls | Fagus | 908 | 1.99% | 98.01% | 0.00% |
Variables | A. sylvaticus | A. flavicollis | C. glareolus | C. russula | Species Richness |
---|---|---|---|---|---|
(Intercept) | 0.92 *** | −1.48 | −1.89 *** | −0.43 *** | 1.91 *** |
(0.01) | (0.88) | (0.01) | (0.01) | (0.44) | |
SeasonSpring | 0.82 *** | 1.08 *** | 0.39 * | ||
(0.01) | (0.00) | (0.15) | |||
Seed of the same year | 0.29 *** | 0.69 *** | −0.68 *** | ||
(0.01) | (0.00) | (0.01) | |||
Seed of the previous year | −0.03 * | 0.27 *** | 0.66 *** | 0.44 *** | 0.25 ** |
(0.01) | (0.00) | (0.01) | (0.01) | (0.09) | |
Spring: seed same year | −0.70 *** | ||||
(0.00) | |||||
Spring: seed previous year | 0.59 *** | 0.51 *** | |||
(0.01) | (0.00) | ||||
AICc | 632.41 | 275.99 | 286.70 | 308.97 | 198.71 |
Dispersion ratio | 0.88 | 1.11 | 0.66 | 0.76 | - |
Num. Obs. | 114 | 114 | 114 | 114 | 80 |
Family | Negative binomial | Negative binomial | Negative binomial | Negative binomial | Gaussian |
R2 marginal | 0.17 | 0.18 | 0.11 | 0.05 | 0.09 |
R2 conditional | 0.62 | 0.83 | 0.91 | 0.47 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanos-Guerrero, C.; Freixas-Mora, L.; Vilella, M.; Bartrina, C.; Torre, I. Seed Availability and Small Mammal Populations: Insights from Mediterranean Forests. Forests 2024, 15, 1148. https://doi.org/10.3390/f15071148
Llanos-Guerrero C, Freixas-Mora L, Vilella M, Bartrina C, Torre I. Seed Availability and Small Mammal Populations: Insights from Mediterranean Forests. Forests. 2024; 15(7):1148. https://doi.org/10.3390/f15071148
Chicago/Turabian StyleLlanos-Guerrero, César, Lídia Freixas-Mora, Marc Vilella, Carme Bartrina, and Ignasi Torre. 2024. "Seed Availability and Small Mammal Populations: Insights from Mediterranean Forests" Forests 15, no. 7: 1148. https://doi.org/10.3390/f15071148
APA StyleLlanos-Guerrero, C., Freixas-Mora, L., Vilella, M., Bartrina, C., & Torre, I. (2024). Seed Availability and Small Mammal Populations: Insights from Mediterranean Forests. Forests, 15(7), 1148. https://doi.org/10.3390/f15071148