Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Soils
2.2. Organic Amendments
2.3. Studied Mixtures
2.4. Physico-Chemical Analyses
2.5. Water Retention Measurements
- WFC is the mass water content at field capacity (pF = 2.0),
- WPWP is the mass water content at the permanent wilting point (pF = 4.2),
- h is the depth of the soil horizon considered (0–20 cm).
2.6. Statistical Analyses
3. Results and Discussion
3.1. Physico-Chemical Properties of the Soils and Organic Amendments
3.2. Influence of Sand Content and Organic Amendments on Soil Water Retention Properties
3.3. Available Water Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hakimi, Y.; Orban, P.; Deschamps, P.; Brouyere, S. Hydrochemical and Isotopic Characteristics of Groundwater in the Continental Intercalaire Aquifer System: Insights from Mzab Ridge and Surrounding Regions, North of the Algerian Sahara. J. Hydrol. Reg. Stud. 2021, 34, 100791. [Google Scholar] [CrossRef]
- Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the Modern Recharge of the “Fossil” Sahara Aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [Google Scholar] [CrossRef]
- de Haas, H. Migration, Agricultural Transformations and Natural Resource Exploitation in the Oases of Morocco and Tunisia; Final Scientific Report IMAROM Research Project (Interaction between Migration, Land and Water Management and Resource Exploitation in the Oases of the Maghreb); University of Amsterdam: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Weber, P.L.; Blaesbjerg, N.H.; Moldrup, P.; Pesch, C.; Hermansen, C.; Greve, M.H.; Arthur, E.; de Jonge, L.W. Organic Carbon Controls Water Retention and Plant Available Water in Cultivated Soils from South Greenland. Soil Sci. Soc. Am. J. 2023, 87, 203–215. [Google Scholar] [CrossRef]
- Panagea, I.S.; Berti, A.; Čermak, P.; Diels, J.; Elsen, A.; Kusá, H.; Piccoli, I.; Poesen, J.; Stoate, C.; Tits, M.; et al. Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe. Land 2021, 10, 1362. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A. Limited Effect of Organic Matter on Soil Available Water Capacity: Limited Effect of Organic Matter on Soil Water Retention. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Yang, X.; Ali, A. Chapter 9—Biochar for Soil Water Conservation and Salinization Control in Arid Desert Regions. In Biochar from Biomass and Waste; Ok, Y.S., Tsang, D.C.W., Bolan, N., Novak, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 161–168. ISBN 978-0-12-811729-3. [Google Scholar]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Mamedov, A.I. Biochar Type and Pyrolysis Temperature Effects on Soil Quality Indicators and Structural Stability. J. Environ. Manag. 2020, 261, 110190. [Google Scholar] [CrossRef]
- Saidi, D.; Bissonnais, Y.L.; Duval, O.; Daoud, Y.; Halitim, A. Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Cheliff (Algérie). Étude Gest. Sols 2004, 11, 137. [Google Scholar]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Tengberg, M. Beginnings and Early History of Date Palm Garden Cultivation in the Middle East. J. Arid. Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Kingdom of Morocco—MAPM-Ministry of Agriculture, Maritime Fisheries, Rural Development and Waters and Forests Programme de Plantation de 3 Millions de Palmier Dattier (2009–2020): Dépassement Des Objectifs Fin de Cette Année | Ministère de l’agriculture. Available online: https://www.agriculture.gov.ma/fr/actualites/programme-de-plantation-de-3-millions-de-palmier-dattier-2009-2020-depassement-des (accessed on 17 December 2023).
- el Janati, M.; Akkal-Corfini, N.; Ahmed, B.; Oukarroum, A.; Robin, P.; Sabri, A.; Chikhaoui, M.; Thomas, Z. Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases. Sustainability 2021, 13, 17. [Google Scholar] [CrossRef]
- el Janati, M.; Robin, P.; Akkal-Corfini, N.; Bouaziz, A.; Sabri, A.; Chikhaoui, M.; Thomas, Z.; Oukarroum, A. Composting Date Palm Residues Promotes Circular Agriculture in Oases. Biomass Conv. Bioref. 2022, 13, 14859–14872. [Google Scholar] [CrossRef]
- el Janati, M.; Akkal-Corfini, N.; Robin, P.; Oukarroum, A.; Sabri, A.; Thomas, Z.; Chikhaoui, M.; Ahmed, B. Compost from Date Palm Residues Increases Soil Nutrient Availability and Growth of Silage Corn (Zea mays L.) in an Arid Agroecosystem. J. Soil Sci. Plant Nutr. 2022, 22, 3727–3739. [Google Scholar] [CrossRef]
- NF ISO 14235. 1998. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-iso-14235/qualite-du-sol-dosage-du-carbone-organique-par-oxydation-sulfochromique/fa040485/14434 (accessed on 2 February 2024).
- NF EN ISO 10693. 2014. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-10693/qualite-du-sol-determination-de-la-teneur-en-carbonate-methode-volumetrique/fa181520/43347 (accessed on 2 February 2024).
- NF X31-130. 1999. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-x31130/qualite-des-sols-methodes-chimiques-determination-de-la-capacite-dechange-c/fa049698/16623 (accessed on 2 February 2024).
- NF ISO 10390. 2005. Available online: https://www.boutique.afnor.org/fr-fr/norme/nf-iso-10390/qualite-du-sol-determination-du-ph/fa117123/25226 (accessed on 2 February 2024).
- NF EN ISO 21663. 2020. Available online: https://m.boutique.afnor.org/fr-fr/norme/nf-en-iso-21663/combustibles-solides-de-recuperation-methodes-de-determination-de-la-teneur/fa196260/260687 (accessed on 2 February 2024).
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Zivanovic, V.; Cornelissen, G.; Mulder, J. Cation Exchange Capacity of Biochar: An Urgent Method Modification. Sci. Total Environ. 2018, 642, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; Csiro Publishing: Clayton, Australia, 2017; ISBN 978-1-4863-0510-0. [Google Scholar]
- de Jesus Duarte, S.; Hubach, A.; Glaser, B. Soil Water Balance and Wettability Methods in Soil Treated with Biochar and/or Compost. Carbon Res. 2022, 1. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar] [CrossRef]
- Budai, A.; Wang, L.; Gronli, M.; Strand, L.T.; Antal, M.J., Jr.; Abiven, S.; Dieguez-Alonso, A.; Anca-Couce, A.; Rasse, D.P. Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars: Effects of Production Temperature and Method. J. Agric. Food Chem. 2014, 62, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar Application Does Not Improve the Soil Hydrological Function of a Sandy Soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Garg, A.; Wani, I.; Zhu, H.; Kushvaha, V. Exploring Efficiency of Biochar in Enhancing Water Retention in Soils with Varying Grain Size Distributions Using ANN Technique. Acta Geotech. 2022, 17, 1315–1326. [Google Scholar] [CrossRef]
- Jensen, N.H.; Balstrøm, T.; Breuning-Madsen, H. The Relations between Soil Water Retention Characteristics, Particle Size Distributions, Bulk Densities and Calcium Carbonate Contents for Danish Soils. Hydrol. Res. 2005, 36, 235–244. [Google Scholar] [CrossRef]
- Mosaddeghi, M.R.; Mahboubi, A.A. Point Pedotransfer Functions for Prediction of Water Retention of Selected Soil Series in a Semi-Arid Region of Western Iran. Arch. Agron. Soil Sci. 2011, 57, 327–342. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Materials 2019, 12, 1732. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-J.; Novak, A.; Yang, Y.; Wang, J. Role of Biochar in Improving Sandy Soil Water Retention and Resilience to Drought. Water 2021, 13, 407. [Google Scholar] [CrossRef]
- Petersen, C.T.; Hansen, E.; Larsen, H.H.; Hansen, L.V.; Ahrenfeldt, J.; Hauggaard-Nielsen, H. Pore-Size Distribution and Compressibility of Coarse Sandy Subsoil with Added Biochar. Eur. J. Soil Sci. 2016, 67, 726–736. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Li, X.; Kang, J.; Xiang, X.; Shi, H.; Ren, X. Effect of Biochar on Soil-Water Characteristics of Soils: A Pore-Scale Study. Water 2023, 15, 1909. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of Biochar Application on Soil Hydrological Properties and Physical Quality of Sandy Soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.; Shen, Y.; Li, S. Sensitivity of Soil Water Retention and Availability to Biochar Addition in Rainfed Semi-Arid Farmland during a Three-Year Field Experiment. Field Crops Res. 2016, 196, 284–293. [Google Scholar] [CrossRef]
- Khalifa, N.; Yousef, L.F. A Short Report on Changes of Quality Indicators for a Sandy Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing Potential of Biochar for Increasing Water-Holding Capacity of Sandy Soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M. Enhancement of Physical and Hydrological Properties of a Sandy Loam Soil via Application of Different Biochar Particle Sizes during Incubation Period. Span. J. Agric. Res. 2016, 14, e1103. [Google Scholar] [CrossRef]
- Ibrahim, A.; Horton, R. Biochar and Compost Amendment Impacts on Soil Water and Pore Size Distribution of a Loamy Sand Soil. Soil Sci. Soc. Am. J. 2021, 85, 1021–1036. [Google Scholar] [CrossRef]
- Allison, L.E.; Brown, J.W.; Hayward, H.E.; Richards, A.; Bernstein, L.; Fireman, M.; Pearson, G.A.; Bower, C.A.; Hatcher, J.T.; Reeve, R.C.; et al. Agriculture Handbook No. 60; United States Department of Agriculture: Washington, DC, USA, 1954.
- Aubertin, M.-L.; Sebag, D.; Jouquet, P.; Pillot, D.; Lamoureux-Var, V.; Kowalewski, I.; Girardin, C.; Houot, S.; Rumpel, C. Abiotic Interactions of Biochar and Compost During Their Blending May Reduce Biochar Thermal Stability. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Ravi, S.; Li, J.; Meng, Z.; Zhang, J.; Mohanty, S. Generation, Resuspension, and Transport of Particulate Matter from Biochar-Amended Soils: A Potential Health Risk. GeoHealth 2020, 4. [Google Scholar] [CrossRef] [PubMed]
- Rumpel, C.; Chaplot, V.; Planchon, O.; Bernadou, J.; Valentin, C.; Mariotti, A. Preferential Erosion of Black Carbon on Steep Slopes with Slash and Burn Agriculture. CATENA 2006, 65, 30–40. [Google Scholar] [CrossRef]
- Sizirici, B.; Fseha, Y.H.; Yildiz, I.; Delclos, T.; Khaleel, A. The Effect of Pyrolysis Temperature and Feedstock on Date Palm Waste Derived Biochar to Remove Single and Multi-Metals in Aqueous Solutions. Sustain. Environ. Res. 2021, 31. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Hensley, D.; Labbé, N. Nutrient Release from Switchgrass-Derived Biochar Pellets Embedded with Fertilizers. Geoderma 2014, 232–234, 341–351. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Saifullah; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar Application for the Remediation of Salt-Affected Soils: Challenges and Opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | Soil A | Soil A1 | Soil A2 | Soil B | Soil B1 | Soil B2 | Compost | Biochar |
---|---|---|---|---|---|---|---|---|---|
Particle size distribution | % Clay | 11.6 | 7.7 | 3.9 | 18.5 | 12.3 | 6.2 | ||
% Silt | 34.9 | 23.3 | 11.6 | 63.1 | 42.1 | 21.0 | |||
% Sand | 53.5 | 69.0 | 84.5 | 18.4 | 45.6 | 72.8 | |||
% 2–4 mm | 3.2 | ||||||||
% 1–2 mm | 12.5 | ||||||||
% 0.5–1 mm | 12.6 | ||||||||
% 0.2–0.5 mm | 18.4 | ||||||||
% <0.2 mm | 53.3 | ||||||||
Bulk density | - | 1.26 ± 0.04 | 1.01 ± 0.02 | ||||||
pH (water) | - | 7.9 ± 0.04 | 8.1 ± 0.02 | 7.0 ± 0.1 | 9.7 ± 0.1 | ||||
EC | mS.cm−1 | 4.0 ± 0.1 | 2.7 ± 0.1 | 1.7 ± 0.1 | 2.5 ± 0.1 | 2.4 ± 0.1 | 2.1 ± 0.1 | 9.2 ± 0.3 | 7.6 ± 0.3 |
Corg | % | 1.26 | 1.33 | 13.7 ± 0.1 | |||||
Ctotal | % | 62.5 | |||||||
CEC | cmol.kg−1 | 6.1 | 8.7 | 126 ± 5 | |||||
Total CaCO3 | % | 11.6 | 8.4 | ||||||
Surface area | m2.g−1 | 13.5 | |||||||
Mineral content | % | 73.7 ± 0.2 | 15.2 ± 0.6 |
pF | 0 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.2 |
---|---|---|---|---|---|---|---|---|---|
A | 0.452 b | 0.428 c | 0.401 c | 0.338 b | 0.186 b | 0.123 c | 0.092 b | 0.070 c | 0.070 d |
A + C | 0.453 b | 0.446 b | 0.418 ab | 0.352 a | 0.203 a | 0.132 c | 0.094 b | 0.075 b | 0.074 c |
A + BC + C | 0.481 a | 0.426 c | 0.414 b | 0.363 a | 0.192 ab | 0.145 b | 0.103 a | 0.078 b | 0.078 b |
A + BC | 0.496 a | 0.467 a | 0.431 a | 0.361 a | 0.228 a | 0.159 a | 0.101 a | 0.083 a | 0.085 a |
A1 | 0.327 c | 0.294 b | 0.290 c | 0.200 d | 0.115 b | 0.091 c | 0.061 c | 0.047 a | 0.048 b |
A1 + C | 0.356 a | 0.317 a | 0.309 b | 0.225 c | 0.133 a | 0.093 b | 0.067 b | 0.049 a | 0.049 b |
A1 + BC + C | 0.355 a | 0.321 a | 0.331 a | 0.246 b | 0.144 a | 0.103 a | 0.072 a | 0.049 a | 0.057 a |
A1 + BC | 0.337 b | 0.325 a | 0.303 b | 0.263 a | 0.140 a | 0.104 a | 0.065 bc | 0.050 a | 0.049 b |
A2 | 0.246 b | 0.198 b | 0.175 b | 0.107 d | 0.079 b | 0.050 c | 0.033 c | 0.024 c | 0.025 c |
A2 + C | 0.260 b | 0.205 b | 0.201 a | 0.120 c | 0.079 b | 0.049 c | 0.036 b | 0.028 b | 0.029 b |
A2 + BC + C | 0.290 a | 0.234 a | 0.200 a | 0.136 b | 0.117 a | 0.064 b | 0.040 a | 0.031 a | 0.033 a |
A2 + BC | 0.290 a | 0.243 a | 0.203 a | 0.175 a | 0.116 a | 0.077 a | 0.037 b | 0.028 b | 0.028 b |
pF | 0 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.2 |
---|---|---|---|---|---|---|---|---|---|
B | 0.661 a | 0.619 b | 0.565 c | 0.494 c | 0.390 b | 0.240 b | 0.166 c | 0.117 b | 0.122 bc |
B + C | 0.666 a | 0.640 a | 0.609 a | 0.514 b | 0.400 b | 0.231 c | 0.166 c | 0.115 b | 0.123 b |
B + BC + C | 0.660 a | 0.633 ab | 0.603 a | 0.539 a | 0.423 a | 0.245 b | 0.169 b | 0.116 b | 0.121 c |
B + BC | 0.674 a | 0.648 a | 0.583 b | 0.516 b | 0.434 a | 0.252 a | 0.179 a | 0.131 a | 0.128 a |
B1 | 0.494 ab | 0.430 a | 0.374 c | 0.344 b | 0.267 b | 0.206 b | 0.113 b | 0.084 b | 0.085 b |
B1 + C | 0.524 a | 0.431 a | 0.408 b | 0.350 b | 0.316 a | 0.195 b | 0.106 c | 0.079 b | 0.087 b |
B1 + BC + C | 0.468 b | 0.454 a | 0.409 b | 0.355 b | 0.298 a | 0.257 a | 0.114 b | 0.092 a | 0.094 a |
B1 + BC | 0.490 ab | 0.448 a | 0.431 a | 0.384 a | 0.317 a | 0.258 a | 0.122 a | 0.085 ab | 0.094 a |
B2 | 0.311 a | 0.262 bc | 0.209 b | 0.192 c | 0.133 c | 0.088 b | 0.056 b | 0.043 b | 0.049 a |
B2 + C | 0.308 a | 0.259 c | 0.221 b | 0.198 bc | 0.156 b | 0.091 b | 0.062 a | 0.047 a | 0.053 a |
B2 + BC + C | 0.309 a | 0.280 b | 0.250 a | 0.209 b | 0.176 a | 0.099 a | 0.060 ab | 0.045 ab | 0.050 a |
B2 + BC | 0.311 a | 0.303 a | 0.259 a | 0.225 a | 0.169 a | 0.098 a | 0.063 a | 0.047 a | 0.052 a |
F Values—Three-Way ANOVA | |||||||
---|---|---|---|---|---|---|---|
Soil | Sand | Treatment | Soil × Sand | Soil × Treatment | Sand × Treatment | Soil × Sand × Treatment | |
SWR | 60.27 *** | 340.6 *** | 0.5699 | 858.4 *** | 9.289 *** | 72.97 *** | 686.4 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Guyader, E.; Morvan, X.; Miconnet, V.; Marin, B.; Moussa, M.; Intrigliolo, D.S.; Delgado-Iniesta, M.J.; Girods, P.; Fontana, S.; Sbih, M.; et al. Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests 2024, 15, 304. https://doi.org/10.3390/f15020304
Le Guyader E, Morvan X, Miconnet V, Marin B, Moussa M, Intrigliolo DS, Delgado-Iniesta MJ, Girods P, Fontana S, Sbih M, et al. Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests. 2024; 15(2):304. https://doi.org/10.3390/f15020304
Chicago/Turabian StyleLe Guyader, Elie, Xavier Morvan, Vincent Miconnet, Béatrice Marin, Mohamed Moussa, Diego S. Intrigliolo, María José Delgado-Iniesta, Pierre Girods, Sebastien Fontana, Mahtali Sbih, and et al. 2024. "Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents" Forests 15, no. 2: 304. https://doi.org/10.3390/f15020304
APA StyleLe Guyader, E., Morvan, X., Miconnet, V., Marin, B., Moussa, M., Intrigliolo, D. S., Delgado-Iniesta, M. J., Girods, P., Fontana, S., Sbih, M., Boumaraf, B., Tirichine, A., Kavvadias, V., & Gommeaux, M. (2024). Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests, 15(2), 304. https://doi.org/10.3390/f15020304